X線回折

野澤恵理花1

共同実験者

HAさん

実験日時

平成 26 年	10月	13 日	13 時 20 分	~	17 時 00 分
平成 26 年	10月	27日	13 時 20 分	~	17時30分
平成 26 年	10月	30日	13 時 20 分	~	15 時 00 分
平成 26 年	11月	6日	13 時 20 分	~	17 時 30 分

要旨

X線回折は、物質の構造を解析する基本的な手法である。本実験では、塩化ナトリウム NaCl、 及び、塩化カリウム KCl の回折パターンを測定し、得られた回折パターンを解析することで、 それら試料の結晶構造を決定した。特に、解析の原理では、様々な因子を取り上げ、物理的要 因の異なる、それら因子の特徴について詳細に調べた。また、NaCl と KCl の回折パターンの 違いから、回折強度と各因子との関係を考察する。

各設問については、以下に示す節において述べた。

【問1】	 第 2.1.1 節	【問12】		第 2.4.1 節
【問2】	 第 2.1.2 節	【問13】	•••	第 2.4.1 節
【問3】	 第 2.1.1 節	【問14】(1)		第 5.1 節
【問4】	 第 6.1 節	【問14】(2)	•••	第 5.2.1 節
【問5】	 第3節	【問 15】	•••	第 5.2.2 節
【問6】	 第 2.3 節	【問16】(1)	•••	第 5.2.2 節
【問7】	 第 2.4.2 節	【問16】(2)	•••	第 5.2.2 節
	第 2.4.3 節	【問16】(3)	•••	第 2.4.5 節
【問8】	 第 2.2 節	【問16】(4)		第 5.2.2 節
【問9】	 第 2.2 節	【問 16】(5)		第 6.2 節
【問10】	 第 2.4.1 節			第 6.3 節
【問11】	 第 2.4.1 節			第 6.4 節

 $^1{\rm g1220}217@edu.cc.ocha.ac.jp$

1 序論

1895年、クルックス管を使って陰極線の研究をしていたレントゲンは、蛍光紙上に現れた暗い線を発見 した。クルックス管は黒いボール紙で覆われており、既知の光は届かなかったが、レントゲンは、この線が 装置由来であると考えた。この未知の光が、後に言う「X線」である^[1]。このX線が陰極線のような粒子 の流れなのか、あるいは、電磁波なのかという問いに対して、1912年、X線の波長が結晶の格子定数より も短いことに気付いたラウエは(当時推定されていた、結晶の格子定数は10⁻¹⁰[m] 程度であり、X線の波 長は10⁻¹¹[m] 程度であった)、硫酸銅の結晶にX線を照射し、その回折像を得ることで、X線が非常に短 い波長をもつ電磁波であることを示した^[2]。その後、ラウエは、結晶中の複数の原子によって散乱された X線同士がどのように干渉し合うか、すなわち、X線の回折条件について、結晶の基本ベクトルとX線の 散乱ベクトルによる説明を行った。これに対し、ブラッグ親子は、1913年、結晶面で散乱されたX線同士 の光路差を考えることで、ラウエの回折条件と等価であるが、より簡潔な関係式(ブラッグの法則)を導い た^[3]。現在、X線回折は、物質の構造を解析する基本的な手法として、物理学、化学、生物学などの様々 な分野で利用されている^[3]。

図 1: SACLA(SPring-8 Angstrom Compact Free Electron Laser)。http://xfel.riken.jp/index.htmlより 転載。

近年、X 線源として、シンクロトロン放射光が利用されている。シンクロトロン放射光は、磁場中で円 運動をする非常に高速な電子から発生し、その特徴として、強度が大きく高輝度である点や、パルス状の連 続 X 線である点、非常に指向性が強い平行光線である点、直線偏光なされている点などを挙げることがで きる^{[4][5]}。さらに、この放射光をコヒーレントな状態(X 線自由電子レーザー、XFEL)にすることで、原 子や分子の瞬間的な運動を観測することができる。日本でも、SACLA(SPring-8 Angstrom Compact Free Electron Laser、図 1)によって XFEL が実現され、最近では、ナノ結晶中の超高速構造変化を観測するこ とに成功している^[6]。今後、このような研究がますます盛んになり、X 線回折の新たなステージとして、物 質の動的な構造への理解がますます進んでいくであろう。

2 原理

この節では、X線、結晶系、X線の回折条件、X線の回折強度について述べる。

2.1 X線

X線は、X線回折実験における最も重要な構成要素である。この小節では、

- X 線の発生
- X 線の除去

について述べる。

2.1.1 X線の発生

本実験では、X線の発生にX線管球を用いる。X線管球では、フィラメントとターゲット金属の間に高 電圧をかけ、フィラメントから発生した熱電子を加速し、ターゲット金属に衝突させることで、X線を発生 させる。このとき発生するX線には、連続X線と特性X線の2つの種類がある。連続X線は、高電圧に より加速され、非常に高い運動エネルギーを持った電子が、ターゲット金属との相互作用により、急激に減 速させられることで生じ、そのX線スペクトルは連続的である。一方、特性X線は、励起状態の原子にお いて、電子が低いエネルギー準位へと遷移するときに放出する余分なエネルギーによって生じ、そのX線 スペクトルは離散的で非常に鋭いピークを持つ。

【問1】図2に、特性X線のK_{α}線、K_{$\beta}線が発生する様子を示す。K 殻の電子が、衝突電子により運動$ エネルギーを得て電子軌道を飛び出すと(図2(a))、原子は励起状態になる。原子がもとの基底状態に戻る $ために、L 殻の電子がK 殻へと遷移し、L 殻とK 殻との軌道エネルギーの差をK_{<math>\alpha$}線として放出するか(図 2(b))、M 殻の電子がK 殻へと遷移し、M 殻とK 殻との軌道エネルギーの差をK_{$\beta}線として放出する(図$ 2(c))。</sub></sub>

図 2: K_{α} 線、 K_{β} 線が発生する様子。青い丸が電子である。(a)K 殻の電子が電子軌道を飛び出す。(b)L 殻の電子が K 殻へと遷移して K_{α} 線を放出する。(c)M 殻の電子が K 殻へと遷移して K_{β} 線を放出する。

さらに K_α 線には、K_{α1} 線と K_{α2} 線という異なる波長を持つ 2 つの X 線が存在する。【問 3】L 殻には、 3 つのエネルギー準位があり、そのうち、最も高いエネルギー準位から電子が遷移するときに放出される のが K_{α1} 線であり、中間のエネルギー準位から電子が遷移するときに放出されるのが K_{α2} 線である。これ ら 2 つのエネルギー準位は非常に接近しているため (例えば Cu では、K_{α1} 線のエネルギーは 8.049[keV]、 K_{α2} 線のエネルギーは 8.029[keV] であり ^[7]、両者は非常に近い値を取る)、どちらか一方から放出される X 線のみを取り出すのは難しい。K_{α1} 線と K_{α2} 線の強度は、各エネルギー準位から K 殻への遷移確率に比 例し、その比は K_{α1} : K_{α2} = 2 : 1 程度となる ^[5]。

2.1.2 X線の除去

X線回折実験では単色のX線を用いるため、 K_{β} 線を取り除かなければならない。【問2】 K_{β} 線を除去する方法として、次の2つが考えられる。

- フィルターを用いる場合
- 結晶モノクロメーターを用いる場合

以下では、それぞれの方法について説明する。なお、本実験では、K_β線を取り除いていない X線を入射 X線として用いた。

(a) フィルターによる K_{β} 線の除去

この方法では、質量吸収係数 $\frac{\mu}{\rho}$ の特性を利用する ${}^{[5][7]}$ 。厚さ x の物質を通過した後の X 線の強度 I(x)は、

$$I(x) = I_0 e^{-\mu x} = I_0 e^{-\left(\frac{\mu}{\rho}\right)\rho x}$$
(1)

と与えられる。ここで、 I_0 は入射 X 線の強度、 μ は線吸収係数であり、 ρ は物質の密度である。式 (1) から、厚さ x が大きくなるほど X 線の強度は減衰し、その減衰率は質量吸収係数 $\frac{\mu}{\rho}$ に比例することが分かる。

質量吸収係数 $\frac{\mu}{\rho}$ は、入射 X 線の波長(エネルギー)に依存する^{[5][7]}。X 線の波長が短くなる(X 線のエネルギーが高くなる)ほど、X 線が物質を通過しやすくなり、質量吸収係数 $\frac{\mu}{\rho}$ は減少する。また、X 線のエネルギーが K 殻の電子を軌道から飛び出させるのに必要な値に達すると(X 線の波長が K 吸収端まで短くなると) X 線は K 殻の電子に吸収されるため、質量吸収係数 $\frac{\mu}{\rho}$ が急激に増加する。図 3 に、波長 λ に対する質量吸収係数 $\frac{\mu}{\rho}$ の概形を示す。

図 3: 波長 λ に対する質量吸収係数 $\frac{\mu}{\rho}$ の概形。横軸は波長 λ であり、縦軸は質量吸収係数 $\frac{\mu}{\rho}$ である。質量 吸収係数 $\frac{\mu}{\rho}$ が大きく変化しているところが K 吸収端である。

K 吸収端の前後で質量吸収係数 $\frac{\mu}{\rho}$ の値が大きく変化することを利用すると、K_β線を除去するフィルターを簡単に作ることができる。フィルターを構成する元素として、その K 吸収端の波長 λ_K が、X 線源が放出する K_α線の波長 λ_α よりやや短く、K_β線の波長 λ_β よりやや長くなる ($\lambda_\beta < \lambda_K < \lambda_\alpha$)ものを選べばよい。このようなフィルターを用いると、図 3、及び、式 (1)から分かるように、 $\lambda = \lambda_K + \Delta\lambda$ では質量吸収係数 $\frac{\mu}{\rho}$ の値が非常に小さいので、K_α線は殆ど減衰しないが、 $\lambda = \lambda_K - \Delta\lambda$ では質量吸収係数 $\frac{\mu}{\rho}$ の値が非常に大きいので、K_β線は大きく減衰する。したがって、フィルターにより K_β線のみを除去する (大きく減衰させる)ことができる。通常、フィルターを構成する元素には、X 線源となる金属ターゲットの元素よりも原子番号が1つだけ小さな元素が選ばれる ^{[5][7]}。

(b) 結晶モノクロメーターによる K_β線の除去

この方法では、結晶モノクロメーターによる X 線回折を利用する ^[7]。図 4 に結晶面における X 線回折の 様子を示す。図 4 のように、1 つの結晶面に X 線が角度 θ で入射されると、結晶面の原子によって散乱さ れた X 線同士が互いに干渉し合い、散乱角 2 θ の回折 X 線として観測される。このとき、各結晶面で散乱 された X 線の光路差は、次の条件、

 $2d\sin\theta = n\lambda$

(2)

を満たす。ここで、d は面間隔、 λ は X 線の波長であり、n は任意の整数である。式 (2) から、波長 λ が K_{α} 線の波長と一致するような入射角 θ を選べば、K_{β} 線を (バックグラウンドの X 線も含めて)除去できるこ とが分かる。一般に、回折 X 線の強度の点から、結晶モノクロメーターに用いる結晶は、曲げられ、特殊 な形状に削られている^[7]。これは、図 4 にあるような互いに平行な入射 X 線同士のみの回折では、その回 折 X 線の強度が非常に小さくなってしまうためである^[7]。

図 4: 結晶面における X 線回折の様子。黒い丸は原子を表し、黒い丸を貫く直線は結晶面を表す。X 線は結晶面に入射角 θ で入射され、散乱角 2θ で散乱される。2 つの結晶面で散乱された X 線の光路差は $2d\sin\theta$ となる。

2.2 結晶系

結晶の単位格子は、3辺の長さ、辺と辺とのなす角を用いて、7つの結晶系(立方、正方、斜方、菱面体、 六方、単斜、三斜)に分類される^{[5][7]}。単位格子内のある面を表す面指数 *hkl* と、結晶内の隣接する(*hkl*) 面間の距離を表す面間隔 *d_{hkl}* との関係は、結晶系によって異なる。まず、3辺の長さが全て異なり、辺と辺 とのなす角も全て異なる値(\neq 90°)をとるような結晶(三斜晶)において、面指数 *hkl* と面間隔 *d_{hkl}* と の関係式を導く。【問8】図5のような、三斜晶の単位格子を考える。各辺は基本ベクトルa₁、a₂、a₃に平 行であり、その長さは、それぞれ、*a*₁ = |**a**₁|、*a*₂ = |**a**₂|、*a*₃ = |**a**₃| である。a₂ とa₃ とのなす角を *α*₁、a₃ とa₁ とのなす角を *α*₂ とし、a₁ とa₂ とのなす角を *α*₃ とする。逆格子ベクトルb₁、b₂、b₃ は、基本ベクト ルa₁、a₂、a₃ によって、

$$\mathbf{b}_1 = \frac{\mathbf{a}_2 \times \mathbf{a}_3}{V}, \ \mathbf{b}_2 = \frac{\mathbf{a}_3 \times \mathbf{a}_1}{V}, \ \mathbf{b}_3 = \frac{\mathbf{a}_1 \times \mathbf{a}_2}{V}$$
(3)

と定義される^[5]。ここで、V は単位格子の体積である。(*hkl*) 面の逆格子ベクトルH_{*hkl*} は、逆格子ベクト ルb₁、b₂、b₃ を用いて、

$$\mathbf{H}_{hkl} = h\mathbf{b}_1 + k\mathbf{b}_2 + l\mathbf{b}_3 \tag{4}$$

図 5: 三斜晶系の単位格子。赤い矢印は a_1 、緑の矢印は a_2 であり、青い矢印は a_3 である。 a_2 と a_3 とのなす角が α_1 、 a_3 と a_1 とのなす角が α_2 であり、 a_1 と a_2 とのなす角が α_3 である。

と表される [5]。(hkl) 面の逆格子ベクトル H_{hkl} の絶対値は、

$$|\mathbf{H}_{hkl}|^2 = \frac{1}{d_{hkl}^2} \tag{5}$$

を満たす [5][7]ので、 $|\mathbf{H}_{hkl}|^2$ を計算することによって、面指数 hklと面間隔 d_{hkl} の関係式を求める。式 (4) から、

$$|\mathbf{H}_{hkl}|^{2} = (h\mathbf{b}_{1} + k\mathbf{b}_{2} + l\mathbf{b}_{3}) \cdot (h\mathbf{b}_{1} + k\mathbf{b}_{2} + l\mathbf{b}_{3})$$

= $h^{2}|\mathbf{b}_{1}|^{2} + k^{2}|\mathbf{b}_{2}|^{2} + l^{2}|\mathbf{b}_{3}|^{2} + 2hk(\mathbf{b}_{1} \cdot \mathbf{b}_{2}) + 2kl(\mathbf{b}_{2} \cdot \mathbf{b}_{3}) + 2lh(\mathbf{b}_{3} \cdot \mathbf{b}_{1})$ (6)

となる。よって、面指数 hkl と面間隔 d_{hkl} の関係式は、式 (5)、式 (6) から、

$$\frac{1}{d_{hkl}^2} = h^2 |\mathbf{b}_1|^2 + k^2 |\mathbf{b}_2|^2 + l^2 |\mathbf{b}_3|^2 + 2hk(\mathbf{b}_1 \cdot \mathbf{b}_2) + 2kl(\mathbf{b}_2 \cdot \mathbf{b}_3) + 2lh(\mathbf{b}_3 \cdot \mathbf{b}_1)$$
(7)

となる。ここで、式
$$(3)$$
から、

$$|\mathbf{b}_1|^2 = \frac{1}{V^2} |\mathbf{a}_2 \times \mathbf{a}_3|^2 = \frac{1}{V^2} (a_2 a_3 \sin \alpha_1)^2 \tag{8}$$

$$|\mathbf{b}_2|^2 = \frac{1}{V^2} |\mathbf{a}_3 \times \mathbf{a}_1|^2 = \frac{1}{V^2} (a_3 a_1 \sin \alpha_2)^2 \tag{9}$$

$$|\mathbf{b}_3|^2 = \frac{1}{V^2} |\mathbf{a}_1 \times \mathbf{a}_2|^2 = \frac{1}{V^2} (a_1 a_2 \sin \alpha_3)^2 \tag{10}$$

$$\mathbf{b}_{1} \cdot \mathbf{b}_{2} = \frac{1}{V^{2}} \{ (\mathbf{a}_{2} \times \mathbf{a}_{3}) \cdot (\mathbf{a}_{3} \times \mathbf{a}_{1}) \} = \frac{1}{V^{2}} \{ (\mathbf{a}_{2} \cdot \mathbf{a}_{3})(\mathbf{a}_{3} \cdot \mathbf{a}_{1}) - (\mathbf{a}_{2} \cdot \mathbf{a}_{1})(\mathbf{a}_{3} \cdot \mathbf{a}_{3}) \}$$
$$= \frac{1}{V^{2}} a_{1} a_{2} a_{3}^{2} (\cos \alpha_{1} \cos \alpha_{2} - \cos \alpha_{3})$$
(11)

$$\mathbf{b}_{2} \cdot \mathbf{b}_{3} = \frac{1}{V^{2}} \{ (\mathbf{a}_{3} \times \mathbf{a}_{1}) \cdot (\mathbf{a}_{1} \times \mathbf{a}_{2}) \} = \frac{1}{V^{2}} \{ (\mathbf{a}_{3} \cdot \mathbf{a}_{1}) (\mathbf{a}_{1} \cdot \mathbf{a}_{2}) - (\mathbf{a}_{3} \cdot \mathbf{a}_{2}) (\mathbf{a}_{1} \cdot \mathbf{a}_{1}) \}$$
$$= \frac{1}{V^{2}} a_{1}^{2} a_{2} a_{3} (\cos \alpha_{2} \cos \alpha_{3} - \cos \alpha_{1})$$
(12)

$$\mathbf{b}_3 \cdot \mathbf{b}_1 = \frac{1}{V^2} \{ (\mathbf{a}_1 \times \mathbf{a}_2) \cdot (\mathbf{a}_2 \times \mathbf{a}_3) \} = \frac{1}{V^2} \{ (\mathbf{a}_1 \cdot \mathbf{a}_2)(\mathbf{a}_2 \cdot \mathbf{a}_3) - (\mathbf{a}_1 \cdot \mathbf{a}_3)(\mathbf{a}_2 \cdot \mathbf{a}_2) \}$$

$$= \frac{1}{V^2} a_1 a_2^2 a_3 (\cos \alpha_3 \cos \alpha_1 - \cos \alpha_2)$$
(13)

である。また、単位格子の体積 V は、

$$V = |\mathbf{a}_1 \cdot (\mathbf{a}_2 \times \mathbf{a}_3)| = \sqrt{|\mathbf{a}_1|^2 |\mathbf{a}_2 \times \mathbf{a}_3|^2 - |\mathbf{a}_1 \times (\mathbf{a}_2 \times \mathbf{a}_3)|^2}$$
(14)

となり、その第2項は、

$$|\mathbf{a}_{1} \times (\mathbf{a}_{2} \times \mathbf{a}_{3})|^{2} = |\mathbf{a}_{2}(\mathbf{a}_{1} \cdot \mathbf{a}_{3}) - \mathbf{a}_{3}(\mathbf{a}_{1} \cdot \mathbf{a}_{2})|^{2}$$

$$= \{\mathbf{a}_{2}(\mathbf{a}_{1} \cdot \mathbf{a}_{3}) - \mathbf{a}_{3}(\mathbf{a}_{1} \cdot \mathbf{a}_{2})\} \cdot \{\mathbf{a}_{2}(\mathbf{a}_{1} \cdot \mathbf{a}_{3}) - \mathbf{a}_{3}(\mathbf{a}_{1} \cdot \mathbf{a}_{2})\}$$

$$= |\mathbf{a}_{2}|^{2}(\mathbf{a}_{1} \cdot \mathbf{a}_{3})^{2} + |\mathbf{a}_{3}|^{2}(\mathbf{a}_{1} \cdot \mathbf{a}_{2})^{2} - 2(\mathbf{a}_{2} \cdot \mathbf{a}_{3})(\mathbf{a}_{1} \cdot \mathbf{a}_{3})(\mathbf{a}_{1} \cdot \mathbf{a}_{2})$$

$$= (a_{1}a_{2}a_{3})^{2}(\cos^{2}\alpha_{2} + \cos^{2}\alpha_{3} - 2\cos\alpha_{1}\cos\alpha_{2}\cos\alpha_{3})$$
(15)

となるので、結局、単位格子の体積 Vは、

$$V = \sqrt{(a_1 a_2 a_3)^2 \sin^2 \alpha_1 - (a_1 a_2 a_3)^2 (\cos^2 \alpha_2 + \cos^2 \alpha_3 - 2\cos \alpha_1 \cos \alpha_2 \cos \alpha_3)}$$
$$= a_1 a_2 a_3 \sqrt{1 - \cos^2 \alpha_1 - \cos^2 \alpha_2 - \cos^2 \alpha_3 + 2\cos \alpha_1 \cos \alpha_2 \cos \alpha_3}$$
(16)

となる。式 (7) から、面間隔 d_{hkl} は面指数 hkl と格子定数(単位格子の辺の長さ a_1 、 a_2 、 a_3 、及び、辺と 辺とのなす角 α_1 、 α_2 、 α_3)によって与えられることが分かる。

$$\frac{1}{d_{hkl}^2} = \frac{h^2}{a^2} + \frac{k^2}{a^2} + \frac{l^2}{a^2} = \frac{h^2 + k^2 + l^2}{a^2}$$
(17)

となる。

2.3 X線の回折条件

第 2.1.2 節(b) で述べたように、結晶面に角度 θ で入射された X 線は、式 (2) を満たすときのみ、回折 X 線として観測される。ここでは、3 次元結晶における X 線の回折条件を求めたい。【問 6】図 6(a) のような 平行六面体の結晶を考える。結晶の 3 辺は基本ベクトル a_1 、 a_2 、 a_3 に平行であり、単位格子は各方向へそ れぞれ、 N_1 、 N_2 、 N_3 個並んでいる。このような結晶において、ラウエ関数 $|G(\mathbf{k})|^2$ は、

$$|G(\mathbf{k})|^2 = \prod_{i=1}^3 \frac{\sin^2(\pi \mathbf{k} \cdot N_i \mathbf{a}_i)}{\sin^2(\pi \mathbf{k} \cdot \mathbf{a}_i)}$$
(18)

となる^{[4][5]}。ここで、k は散乱ベクトルであり、X 線の入射方向の単位ベクトルs₀、散乱方向の単位ベクト ルs、波長 λ を用いて、

$$\mathbf{k} = \frac{\mathbf{s} - \mathbf{s}_0}{\lambda} \tag{19}$$

と表される。図 6(b) から、散乱ベクトルk の絶対値は、

$$|\mathbf{k}| = \frac{|\mathbf{s} - \mathbf{s}_0|}{\lambda} = \frac{2\sin\theta}{\lambda}$$
(20)

図 6: (a) 平行六面体の 3 次元結晶と (b)X 線の入射方向の単位ベクトルs₀ と散乱方向の単位ベクトルs。赤 い矢印は基本ベクトルa₁、緑の矢印は基本ベクトルa₂ であり、青い矢印は基本ベクトルa₃ である。

となる。

まず、式 (18) の第 i 項において、 $x = \pi \mathbf{k} \cdot \mathbf{a}_i$ ($0 \le x \le 2\pi$)、 $N_i = 20$ とし、

$$g(x) = \frac{\sin^2 N_i x}{\sin^2 x} \tag{21}$$

をプロットすると図 7 になる。図 7 から、g(x) は $x = n\pi$ (n は任意の整数)においてのみ、 N_i^2 (通常の結晶の場合、 $N_i^2 \sim 10^{14}$ 程度である ^[5])の鋭いピークを持つことが分かる。よって、散乱ベクトルk が、

$$\begin{cases} \mathbf{k} \cdot \mathbf{a}_1 = h \\ \mathbf{k} \cdot \mathbf{a}_2 = k \quad (h, k, l \ l \mathbf{t} 任意の整数) \\ \mathbf{k} \cdot \mathbf{a}_3 = l \end{cases}$$
(22)

を満たすとき、ラウエ関数 |G(k)|²は鋭いピークを持つ。これをラウエの回折条件と言う。

図 7: ラウエ関数 $|G(\mathbf{k})|^2$ の第 *i* 項。横軸を $x = \pi \mathbf{k} \cdot \mathbf{a}_i$ とし、縦軸を $g(x) = \frac{\sin^2 N_i x}{\sin^2 x}$ とした。 $N_i = 20$ とし、 $0 \le x \le 2\pi$ の範囲をプロット。

次に、逆格子ベクトル \mathbf{b}_i (i = 1, 2, 3)を用いて、任意のベクトルH、

$$\mathbf{H} = \sum_{i=1}^{3} p_i \mathbf{b}_i \tag{23}$$

を考える。ここで、基本ベクトルa_iと逆格子ベクトルb_iには、式(3)から、

$$\mathbf{a}_i \cdot \mathbf{b}_j = \delta_{ij}$$
 (δ_{ij} はクロネッカーのデルタ) (24)

という関係が成り立つので、

9

$$p_i = \mathbf{H} \cdot \mathbf{a}_i \tag{25}$$

となる。式 (25) を式 (23) に代入し、

$$\mathbf{H} = \sum_{i=1}^{3} (\mathbf{H} \cdot \mathbf{a}_i) \mathbf{b}_i \tag{26}$$

を得る。Hに散乱ベクトルkを代入すると、式(22)のラウエの回折条件から、

$$\mathbf{k} = \sum_{i=1}^{3} (\mathbf{k} \cdot \mathbf{a}_i) \mathbf{b}_i = h \mathbf{b}_1 + k \mathbf{b}_2 + l \mathbf{b}_3 = \mathbf{H}_{hkl}$$
(27)

となる。ここで、 \mathbf{H}_{hkl} は (*hkl*) 面の逆格子ベクトルである。式 (27) は、散乱ベクトルk が (*hkl*) 面の逆格 子ベクトル \mathbf{H}_{hkl} と一致するときに、回折 X 線が観測されることを示している。また、 \mathbf{H}_{hkl} は、

$$|\mathbf{H}_{hkl}| = \frac{1}{d_{hkl}} \tag{28}$$

を満たすので、式(20)、式(27)、式(28)から、

$$\frac{2\sin\theta}{\lambda} = \frac{1}{d_{hkl}} \iff 2d_{hkl}\sin\theta = \lambda \tag{29}$$

となり、ブラッグの式を得ることができる。式 (29) は、

$$\theta = \sin^{-1} \frac{\lambda}{2d_{hkl}} \tag{30}$$

となり、面間隔 d_{hkl} は格子定数によって与えられる(第 2.2 節)ので、回折条件を満たす角度 θ は格子定数によって決まることが分かる。

2.4 X線の回折強度

X線の相対回折強度の計算では、試料の結晶構造や、実験装置の幾何学的配置、温度などの影響によって、次のような因子が考慮され^{[5][7]}、実験値をうまく説明するための工夫が図られる。

- 構造因子 F
- **ローレンツ**因子 *L*
- 偏光因子 P
- 多重度因子 m
- 吸収因子 A
- 温度因子 (デバイ・ワーラー因子) DW

ローレンツ因子 *L* と偏光因子 *P* は、2 つを掛け合わせて、ローレンツ偏光因子 *LP* とすることもある。上 に挙げた因子のうち、吸収因子 *A* は、ディフラクトメーターを用いた本実験では、入射角 θ の値によらず 定数となる ^{[5][7]} ので、相対回折強度の計算からは除外することができる。この小節では、吸収因子 *A* を除 く各因子についての説明を行う。

2.4.1 構造因子 F

構造因子 Fは、単位格子内の原子によって散乱された X線の振幅と位相を表す式であり、

$$F = \sum_{n=1}^{N} f_n e^{2\pi i (hu_n + kv_n + lw_n)}$$
(31)

と定義される ^{[4][5][7]}。ここで、N は単位格子に含まれる原子の数、 f_n は n 番目の原子の原子散乱因子(同一原子であれば同じ値)であり、 $u_n v_n w_n$ は n 番目の原子の単位格子中の位置である。構造因子 F を具体的に計算してみる。【問 11】単原子からなる面心格子の場合、単位格子中の原子の位置は、

$$000, \ \frac{1}{2}\frac{1}{2}0, \ 0\frac{1}{2}\frac{1}{2}, \ \frac{1}{2}0\frac{1}{2}$$
(32)

であるので、式 (31) から、構造因子 Fは、

$$F = f e^{2\pi i (h \cdot 0 + k \cdot 0 + l \cdot 0)} + f e^{2\pi i (h \cdot \frac{1}{2} + k \cdot \frac{1}{2} + l \cdot 0)} + f e^{2\pi i (h \cdot 0 + k \cdot \frac{1}{2} + l \cdot \frac{1}{2})} + f e^{2\pi i (h \cdot \frac{1}{2} + k \cdot 0 + l \cdot \frac{1}{2})}$$

$$= f \left\{ 1 + e^{\pi i (h+k)} + e^{\pi i (k+l)} + e^{\pi i (h+l)} \right\}$$

$$= \left\{ \begin{array}{ccc} 4f & \cdots & h, k, l \text{ is } \pm \tau \text{ (add)} \\ 0 & \cdots & h, k, l \text{ is } \pm \tau \text{ (bdd)} \pm \tau \text{ (bdd)} \\ 0 & \cdots & h, k, l \text{ is } \pm \tau \text{ (bdd)} \pm \tau \text{ (bdd)} \\ \end{array} \right\}$$

$$(33)$$

となる。また、単原子からなる体心格子の場合、単位格子中の原子の位置は、

$$000, \ \frac{1}{2}\frac{1}{2}\frac{1}{2} \tag{34}$$

であるので、式 (31) から、構造因子 Fは、

$$F = f e^{2\pi i (h \cdot 0 + k \cdot 0 + l \cdot 0)} + f e^{2\pi i (h \cdot \frac{1}{2} + k \cdot \frac{1}{2} + l \cdot \frac{1}{2})} = f \left\{ 1 + e^{\pi i (h + k + l)} \right\}$$
$$= \begin{cases} 2f \cdots (h + k + l) \text{ が偶数のとき} \\ 0 \cdots (h + k + l) \text{ が奇数のとき} \end{cases}$$
(35)

となる。式 (33)、式 (35) から、回折 X 線の強度が 0 になるような面指数 *hkl* が存在して、それは単位格子 内の原子の位置 $u_n v_n w_n$ に依存していることが分かる。回折 X 線の強度が 0 になるとは、X 線の入射角 θ が式 (29) のブラッグの式を満たしていても、回折線が観測されないことを意味する。よって、回折 X 線の 強度分布を測定することにより、単位格子内の原子の位置を特定することができる。式 (33)、式 (35) のよ うな、回折線が消滅する面指数 *hkl* の規則性を消滅則と言う ^[4]。

本実験では、試料に塩化ナトリウム NaCl と塩化カリウム KCl を用いた。そこで、NaCl と KCl の構造因 子を計算し、消滅則を求める。【問 10】図 8 に、NaCl (KCl) の結晶構造を示す。図 8 にあるように、NaCl、 KCl は共に立方晶であり、単位格子は面心立方格子である。NaCl (KCl) の単位格子において、Na⁺ イオ ン (K⁺ イオン) の位置は、

000,
$$\frac{1}{2}\frac{1}{2}$$
0, $0\frac{1}{2}\frac{1}{2}$, $\frac{1}{2}0\frac{1}{2}$ (36)
であり、CI-イオンの位置は、
 $\frac{1}{2}\frac{1}{2}\frac{1}{2}$, $00\frac{1}{2}$, $\frac{1}{2}$ 00, $0\frac{1}{2}$ 0 (37)

である。【問 12】、【問 13】Na⁺ イオンの原子散乱因子を $f_{Na^+}\left(\frac{\sin\theta}{\lambda}\right)$ とし、Cl⁻ イオンの原子散乱因子を $f_{Cl^-}\left(\frac{\sin\theta}{\lambda}\right)$ とすると、式 (31) から、NaCl の構造因子 F_{NaCl} は、

図 8: 塩化ナトリウム NaCl (塩化カリウム KCl)の単位格子。赤い丸は Na⁺ イオン (K⁺ イオン)であり、 青い丸は Cl⁻ イオンである。

$$F_{NaCl} = f_{Na^{+}} \left(\frac{\sin\theta}{\lambda}\right) \left\{ 1 + e^{\pi i (h+k)} + e^{\pi i (k+l)} + e^{\pi i (h+l)} \right\}$$

$$+ f_{Cl^{-}} \left(\frac{\sin\theta}{\lambda}\right) \left\{ e^{\pi i (h+k+l)} + e^{\pi i l} + e^{\pi i h} + e^{\pi i k} \right\}$$

$$= \left\{ f_{Na^{+}} \left(\frac{\sin\theta}{\lambda}\right) + f_{Cl^{-}} \left(\frac{\sin\theta}{\lambda}\right) e^{\pi i (h+k+l)} \right\} \left\{ 1 + e^{\pi i (h+k)} + e^{\pi i (k+l)} + e^{\pi i (h+l)} \right\}$$

$$= \left\{ \begin{array}{c} 4 \left\{ f_{Na^{+}} \left(\frac{\sin\theta}{\lambda}\right) + f_{Cl^{-}} \left(\frac{\sin\theta}{\lambda}\right) \right\} & \cdots & h, k, l \text{ } \texttt{i} \texttt{i} \texttt{i} \texttt{l} \texttt{c} \land (h+k+l) \text{ } \texttt{i} \texttt{d} \texttt{d} \texttt{s} \texttt{o} \texttt{c} \texttt{c} \texttt{s} \end{array} \right.$$

$$= \left\{ \begin{array}{c} 4 \left\{ f_{Na^{+}} \left(\frac{\sin\theta}{\lambda}\right) + f_{Cl^{-}} \left(\frac{\sin\theta}{\lambda}\right) \right\} & \cdots & h, k, l \text{ } \texttt{i} \texttt{i} \texttt{i} \texttt{l} \texttt{c} \land (h+k+l) \text{ } \texttt{i} \texttt{d} \texttt{d} \texttt{s} \texttt{o} \texttt{c} \texttt{s} \end{aligned} \right.$$

$$(38)$$

となる。KClの構造因子 F_{KCl} は、K⁺ イオンの原子散乱因子を $f_{K^+}\left(\frac{\sin\theta}{\lambda}\right)$ とすると、式 (31) から同様に、

$$F_{KCl} = \left\{ f_{K^+} \left(\frac{\sin \theta}{\lambda} \right) + f_{Cl^-} \left(\frac{\sin \theta}{\lambda} \right) e^{\pi i (h+k+l)} \right\} \left\{ 1 + e^{\pi i (h+k)} + e^{\pi i (k+l)} + e^{\pi i (h+l)} \right\}$$
$$= \left\{ \begin{array}{c} 4 \left\{ f_{K^+} \left(\frac{\sin \theta}{\lambda} \right) + f_{Cl^-} \left(\frac{\sin \theta}{\lambda} \right) \right\} & \cdots & h, k, l \text{ が非混合} \land (h+k+l) \text{ が偶数のとき} \\ 4 \left\{ f_{K^+} \left(\frac{\sin \theta}{\lambda} \right) - f_{Cl^-} \left(\frac{\sin \theta}{\lambda} \right) \right\} & \cdots & h, k, l \text{ が非混合} \land (h+k+l) \text{ が奇数のとき} \\ 0 & \cdots & h, k, l \text{ が混合のとき} \end{array} \right.$$
(39)

となる。式 (38)、式 (39) から、NaCl や KCl では、面指数 hkl が混合のときに回折 X 線の強度が 0 となる (回折線が消滅する)ことが分かる。また、面指数 hkl が非混合のときであっても、(h + k + l) が偶数のと きと奇数のときで、構造因子が変化することに注意する必要がある。

2.4.2 ローレンツ因子 L

【問7】ディフラクトメーターにおけるローレンツ因子 *L* を求めたい。ここでは、ローレンツ因子 *L* を 次の3つの小因子に分けて考える。

- 回折線の広がりによる小因子 L₁
- 回折に寄与する結晶粒数による小因子 L₂
- カウンターの配置による小因子 L₃

図 9:積分強度 I_{int} のブラッグ角 θ_B 依存性。(a) ブラッグ角 θ_B から $\Delta \theta$ 回転する試料、(b) 散乱角 2 θ に対 する回折強度 I、(c) ブラッグ角 θ_B から $\Delta \theta$ 回転する試料の結晶面。(a) において、青い面は散乱角 2 θ_B に 対応する面であり、赤い面はブラッグ角 θ_B から $\Delta \theta$ 回転した面である。(b) において、横軸は散乱角 2 θ で あり、縦軸は回折強度 I である。

回折 X 線は、式 (29) のブラッグの式を正確に満たすような角度 θ_B (ブラッグ角)で、X 線が試料に入射 されたときにのみ観測される。しかしながら、図 9(b) のように、ディフラクトメーターで観測される回折 線には広がりがあり、入射角 θ が $\theta_B \le \theta \le \theta_B + \Delta \theta$ となる X 線によっても、回折 X 線が観測される。こ のような回折線の広がりは、回折 X 線の積分強度 I_{int} を計算することで求められる。積分強度 I_{int} とは、 図 9(b) の回折線に囲まれた面積のことであり、回折線のピーク強度 I_{max} と半値幅 B により、

$$I_{int} = I_{max}B$$

(40)

と近似される^[8]。積分強度 I_{int} はブラッグ角 θ_B の値に依存する。このことをピーク強度 I_{max} と半値幅 B のプラッグ角 θ_B への依存性から導く。

ピーク強度 I_{max} のブラッグ角 θ_B 依存性を求める。図 9(a) のように、試料は点 O を中心にしてブラッ グ角 θ_B から $\Delta \theta$ 回転している。X 線は角度 $\theta_1 = \theta_B + \Delta \theta$ で入射し、角度 $\theta_2 = \theta_B - \Delta \theta$ で散乱される。 図 9(c) は図 9(a) を拡大して見たものである。図 9(c) に示したように、原子間距離を a とすると、結晶面の 長さは Na と表される。このとき入射 X 線 1、2 の光路差 Δ_{12} は $\Delta_{12} = a \cos \theta_1$ となり、回折 X 線 1、2 の光路差 $\Delta_{1'2'}$ は $\Delta_{1'2'} = a \cos \theta_2$ となることから、隣接する原子によって散乱された 2 本の X 線の光路差 δ_{12} は、

$$\delta_{12} = \Delta_{1'2'} - \Delta_{12} = a \cos \theta_2 - a \cos \theta_1 = a \{ \cos(\theta_B - \Delta \theta) - \cos(\theta_B + \Delta \theta) \}$$
$$= a \{ \cos \theta_B \cos \Delta \theta + \sin \theta_B \sin \Delta \theta - (\cos \theta_B \cos \Delta \theta - \sin \theta_B \sin \Delta \theta) \}$$
$$= 2a \sin \theta_B \sin \Delta \theta$$
$$\sim 2a \Delta \theta \sin \theta_B \quad (\Delta \theta \ll 1 \downarrow \mathfrak{I})$$
(41)

となる。この結晶面の両端の原子によって散乱された 2 本の X 線の光路差は、結晶面の長さが Na である ことから、 $2Na\Delta\theta\sin\theta_B$ となる。両端の原子による散乱 X 線の光路差が 1 波長分のとき、その内側の原子 による散乱 X 線の光路差は全て 1 波長に満たず、散乱 X 線同士が打ち消し合い、回折強度 I は 0 になる。 よって、回折強度 I が 0 になる条件は、

$$2Na\Delta\theta\sin\theta_B = \lambda \iff \Delta\theta = \frac{\lambda}{2Na\sin\theta_B} \propto \frac{1}{\sin\theta_B}$$
(42)

となる。ピーク強度 I_{max} は $\Delta \theta$ に依存する ^[7] ため、式 (42) から、ピーク強度 I_{max} は $\frac{1}{\sin \theta_B}$ に比例する ことが分かる。 $\theta_B = 0$ のとき $\frac{1}{\sin \theta_B} = \infty$ となり、 $\theta_B = \frac{\pi}{2}$ のとき $\frac{1}{\sin \theta_B} = 1$ となるので、ピーク強度 I_{max} は低角側では大きくなり、高角側では小さくなる。また、半値幅 B は $\frac{1}{\cos \theta_B}$ に比例し ^[7]、ピーク強度 I_{max} とは逆に、低角側では小さくなり、高角側では大きくなる。よって、式 (40) から、積分強度 I_{int} は、

$$I_{int} = I_{max}B \propto \frac{1}{\sin\theta_B} \frac{1}{\cos\theta_B} = \frac{2}{\sin 2\theta_B}$$
(43)

となり、 $\frac{1}{\sin 2\theta_B}$ に比例することが分かる。したがって、回折線の広がりによる小因子 L_1 は、

$$L_1 = \frac{1}{\sin 2\theta_B} \tag{44}$$

と与えられる。

粉末試料の場合には、散乱角 $2\theta_B$ の X 線回折に寄与する結晶粒が、全結晶粒に対してどの程度あるかにより、積分強度が変化する。結晶粒はでたらめに並んでいるため、図 10(a)のように、散乱角 $2\theta_B$ の X 線をその母線とする回折円錐(青い二等辺三角形)と、その回折円錐の形成に寄与する結晶粒の面法線の分布(赤い帯)を考える。図 10(a)は、回折円錐、及び、面法線の分布の xz平面への射影であり、等辺 rの青い二等辺三角形は、母線の長さ rの回折円錐を表し、幅 $r\Delta\theta$ の赤い帯は、入射角 θ を $\theta_B \le \theta \le \theta_B + \Delta\theta$ とする結晶粒の面法線の分布を表す。緑の面は、青い二等辺三角形の形成に寄与する結晶粒の結晶面の 1 つであり、その面法線は半径 rの球上で赤い帯の形成に寄与する。全結晶粒数を Nとし、X 線回折に寄与する結晶粒数を ΔN とすると、 $\frac{\Delta N}{N}$ は、半径 rの球の表面積に対する赤い帯の面積の比に等しく、図 10(a)から、

$$\frac{\Delta N}{N} = \frac{r\Delta\theta \cdot 2\pi r \sin\left(\frac{\pi}{2} - \theta_B\right)}{4\pi r^2} = \frac{\Delta\theta \cos\theta_B}{2} \tag{45}$$

となる。式 (45) から、低角側ほど回折に寄与する結晶粒数が多いことが分かる。積分強度は $\frac{\Delta N}{N}$ に比例するため、回折に寄与する結晶粒数による小因子 L_2 は、

$$L_2 = \cos \theta_B \tag{46}$$

と与えられる。

図 10: 散乱角 $2\theta_B$ の X 線をその母線とする回折円錐と (a) 回折円錐の形成に寄与する結晶粒の面法線の分 布 (xz 平面への射影)、(b) カウンターの測定範囲 (xy 平面への射影)。青い三角形は、散乱角 $2\theta_B$ の X 線 をその母線とする回折円錐、緑の面は、回折円錐の形成に寄与する結晶粒の結晶面の 1 つ、赤い帯は、回 折円錐の形成に寄与する結晶粒の面法線の分布であり、オレンジの帯は、カウンターの測定範囲である。

相対回折強度は、ある回折線の一定の長さあたりの積分強度 I_{int} (図 10(a) の回折円錐により示された 全回折強度ではない)を比較することによって得られる。図 10(b) は、回折円錐、及び、カウンターの測定 範囲の xy 平面への射影 (図 10(a) を上から見た図)である。青い二等辺三角形は、回折円錐を表し、オレ ンジの帯は、カウンターによって測定される範囲を表す。カウンターによって測定可能な回折円錐の範囲は 青い太線で示されている。円錐の弧の長さが長くなるほど、全回折強度に対する積分強度 I_{int} が小さくな るので、積分強度 I_{int} は円錐の弧の長さに反比例する。図 10(b) から、円錐の弧の長さは $2\pi r \sin 2\theta_B$ とな るので、ある回折線の一定の長さあたりの積分強度は、 $\frac{1}{\sin 2\theta_B}$ に比例する。よって、カウンターの配置に よる小因子 L_3 は、

$$L_3 = \frac{1}{\sin 2\theta_B} \tag{47}$$

と与えられる。

ローレンツ因子 L は、これまで述べてきた、回折線の広がりによる小因子 L_1 、回折に寄与する結晶粒数 による小因子 L_2 、カウンターの配置による小因子 L_3 の3つの小因子をかけ合わせたものである。 θ_B を改 めて θ とすれば、ローレンツ因子 L は、

$$L = L_1 L_2 L_3 = \frac{1}{\sin 2\theta} \cos \theta \frac{1}{\sin 2\theta} = \frac{\cos \theta}{\sin^2 2\theta} = \frac{\cos \theta}{4 \sin^2 \theta \cos^2 \theta} = \frac{1}{4 \sin^2 \theta \cos \theta}$$
(48)

となる。

2.4.3 偏光因子 P

【問7】1個の電子によって散乱された X 線の強度 Isc は、

$$I_{sc} = I_0 \frac{K}{r^2} \sin^2 \alpha \tag{49}$$

と定義される ^{[4][5][7]}。ここで、 I_0 は入射 X 線の強度、K は定数、r は電子からの距離であり、 α は電子が加速される方向と散乱 X 線の進行方向とのなす角である。式 (49) から、散乱 X 線の強度 I_{sc} は散乱方向によって変化することが分かる。図 11 に、1 個の電子によって散乱される X 線の様子を示す。

図 11: 1 個の電子によって散乱される X 線の様子。x 軸方向へ進む入射 X 線は、原点 O にいる電子によって、xz 平面上に散乱角 2θ で散乱される。赤い線は入射 X 線、及び、散乱 X 線であり、青い線は X 線の電 場 $\mathbf{E} = \mathbf{E}_y + \mathbf{E}_z$ である。

図 11 のように、x 軸方向へ進む入射 X 線が、原点 O にいる電子によって、xz 平面上に散乱角 2θ で散乱 されるとする。このとき点 P における散乱 X 線の強度 $I_{sc}(P)$ を求める。x 軸方向へ進む入射 X 線は、yz 平面上に任意の方向を向いた電場E を持ち、

$$|\mathbf{E}|^{2} = |\mathbf{E}_{y} + \mathbf{E}_{z}|^{2} = |\mathbf{E}_{y}|^{2} + |\mathbf{E}_{z}|^{2}$$
(50)

と表されるとする。ここで、 E_y は電場Eの y 軸方向の成分であり、 E_z は電場Eの z 軸方向の成分である。 今、入射 X 線は偏光性を持たず、E の方向はランダムであるため、平均的な E_y と E_z は等しい。よって、式 (50) から、

$$|\mathbf{E}_{y}|^{2} = |\mathbf{E}_{z}|^{2} = \frac{1}{2}|\mathbf{E}|^{2} \tag{51}$$

となる。入射 X 線の強度 I_0 は、電場の二乗に比例するので、y 軸方向の成分を I_{0y} とし、z 軸方向の成分 を I_{0z} として、式 (51) から、

$$I_{0y} = I_{0z} = \frac{1}{2}I_0 \tag{52}$$

となる。また、点 P での散乱強度 $I_{sc}(P)$ は、y 軸方向の散乱強度 $I_{scy}(P)$ と z 軸方向の散乱強度 $I_{scz}(P)$ に より、

$$I_{sc}(P) = I_{scy}(P) + I_{scz}(P)$$
(53)

となる。y軸方向の散乱強度 $I_{scy}(P)$ は、 $\alpha = \frac{\pi}{2}$ より、式 (49) から、

4

$$I_{scy}(P) = I_{0y} \frac{K}{r^2} \sin^2 \frac{\pi}{2} = I_{0y} \frac{K}{r^2}$$
(54)

となり、z軸方向の散乱強度 $I_{scz}(P)$ は、 $\alpha = \frac{\pi}{2} - 2\theta$ より、式 (49) から、

$$I_{scz}(P) = I_{0z} \frac{K}{r^2} \sin^2\left(\frac{\pi}{2} - 2\theta\right) = I_{0z} \frac{K}{r^2} \cos^2 2\theta$$
(55)

となる。よって、式 (52) ~式 (55) から、点 P における散乱強度 $I_{sc}(P)$ は、

$$I_{sc}(P) = \frac{K}{r^2} (I_{0y} + I_{0z} \cos^2 2\theta) = \frac{K}{r^2} \left(\frac{1}{2} I_0 + \frac{1}{2} I_0 \cos^2 2\theta \right) = I_0 \frac{K}{r^2} \frac{1 + \cos^2 2\theta}{2}$$
(56)

となり、 偏光因子 Pは、

$$P = \frac{1 + \cos^2 2\theta}{2} \tag{57}$$

となる。

また、ローレンツ偏光因子 LP は、式 (48) のローレンツ因子 L から係数 $\frac{1}{4}$ を除いた式と、式 (57) の偏 光因子 P を用いて、

$$LP = \frac{1}{\sin^2 \theta \cos \theta} \frac{1 + \cos^2 2\theta}{2} = \frac{1 + \cos^2 2\theta}{2\sin^2 \theta \cos \theta}$$
(58)

となる。図 12 に、散乱角 2 θ に対するローレンツ偏光因子 *LP* の様子を示す。図 12 から分かるように、ローレンツ偏光因子 *LP* は、低角側(散乱角 2 $\theta \sim 0$)では非常に大きく、散乱角 2 θ の増加に伴って急激に減少すると、2 $\theta \sim \frac{\pi}{2}$ 付近で最小値を取った後、高角側(散乱角 2 $\theta \sim \pi$)において再び大きくなる。

図 12: 散乱角 2θ に対するローレンツ偏光因子 LP の様子。横軸は散乱角 $2\theta[^{\circ}]$ であり、縦軸はローレンツ 偏光因子 LP である。

2.4.4 多重度因子 m

立方晶系において、(100)面に等価な面は (010)、(001)、($\overline{1}00$)、($0\overline{1}0$)、($00\overline{1}$) である。等価な面は全て面 間隔が等しいため、これらの面から散乱された X 線は、散乱角 2 θ の値も全て等しくなる。ある (hkl)面に 等価な面が多いとき、その散乱角 2 θ における回折強度 I も大きくなる。よって、多重度因子 m は、ある (hkl)面に等価な面の数として定義される。ある (hkl)面に等価な面の数は、結晶系の種類によって異なる ため(例えば、立方晶では (100) と (001)は等価な面であるが、正方晶では等価な面でない)、多重度因子 m も結晶系の種類によって異なる。

2.4.5 温度因子 (デバイ・ワーラー因子) DW

【問 16(3)】温度因子(デバイ・ワーラー因子)DWは、結晶中の原子の熱振動(格子振動)による因子 である。結晶中の原子は格子振動をしているため、結晶面は固定されず(厚みを持ち)、面間隔 d は変化す る。このため、格子振動がある結晶では、散乱 X 線同士の強め合い(回折)が不完全なものとなる。つま り、原子の平均位置からのずれを u とすると(このとき結晶面の厚みが 2u となる)、 $\frac{u}{d}$ が大きいほど、散 乱 X 線同士の強め合いが不完全となり、X 線の回折強度 I は減衰する ^{[5][7]}。 $\frac{u}{d}$ が大きくなる要因として、

- 温度が高くなることによって、原子の位置のずれ u が大きくなる。
- 散乱角 2θ が大きくなることによって、式 (29) のブラッグの式を満たす面間隔 d が小さくなる。

が挙げられる。この減衰を回折強度 I に加味するために、因子 e^{-M} を考え、原子散乱因子 f を、

$$(59)$$

と置きなおす。ここで、 f_0 は格子振動が無い場合の原子散乱因子であり、M は、原子の位置のずれの二乗の平均 $\overline{u^2}$ を用いて、

$$M = 2\pi^2 \frac{\overline{u^2}}{d^2} = 2\pi^2 \left\{ \frac{\overline{u^2}}{\left(\frac{\lambda}{2\sin\theta}\right)^2} \right\} = 8\pi^2 \overline{u^2} \left(\frac{\sin\theta}{\lambda}\right)^2 \equiv C \left(\frac{\sin\theta}{\lambda}\right)^2 \tag{60}$$

と与えられる ^[7]。回折強度 I は構造因子 $|F|^2$ に比例し、第 2.4.1 節から、構造因子 $|F|^2$ は原子散乱因子 f^2 に依存するため、デバイ・ワーラー因子 DW は、

$$DW = e^{-2M} \tag{61}$$

となる。図 13 に、 $\frac{\sin\theta}{\lambda}$ に対する NaCl のデバイ・ワーラー因子 DW の様子を示す。ここで、 $C = 1.5[^2]$ とした。図 13 から分かるように、デバイ・ワーラー因子 DW は、 $\frac{\sin\theta}{\lambda}$ が大きくなる(散乱角 2 θ が大きくなる) ほど減少していく。デバイ・ワーラー因子 DW は、回折強度 I の温度変化を与える。

図 13: $\frac{\sin \theta}{\lambda}$ に対するデバイ・ワーラー因子 *DW* の様子。横軸は $\frac{\sin \theta}{\lambda}$ [⁻¹] であり、縦軸はデバイ・ワーラー 因子 *DW* である。C = 1.5[²] とした。

3 装置

図 14 に、装置構成図を示す。図 14 に示したように、装置は、コンピュータ、粉末 X 線回折装置(ディ フラクトメーター)、ユニットクーラーからなる。ディフラクトメーターにおいて、散乱角 20 ごとの回折 X 線の強度が測定され、そのデータがコンピュータへと送られる。ディフラクトメーターは、X 線管球の フィラメントにかかる高電圧により、非常に高温になるため、ユニットクーラーから冷却水を送り込み、冷 却する。

図 14: 装置構成図。装置は、(a) コンピュータ、(b) 粉末 X 線回折装置 (ディフラクトメーター)、(c) ユニットクーラーからなる。

図 15 に、ディフラクトメーターの概略図を示す。ディフラクトメーターは、X 線管球、ソーラースリット、発散スリット、試料、散乱スリット、受光スリット、カウンターからなる。ソーラースリットは2つあり、一方はX 線管球と発散スリットとの間に置かれ、もう一方は散乱スリットと受光スリットとの間に置かれている。X 線管球から放出された X 線は、ソーラースリットにより垂直方向のばらつきを取り除かれ、 発散スリットにより水平方向のばらつきを取り除かれ、試料へと入射する。試料により散乱された X 線は 散乱スリットを通過する。散乱スリットは、X線の水平方向のばらつきを制御することで、試料外からの 散乱 X線をカットする。散乱スリットを通過した X線は、ソーラースリットにより垂直方向のばらつきを 取り除かれ、受光スリット上の焦点に水平方向の集光をする。また、Oを中心に試料がθ回転すると、そ れに同期してカウンターは 2θ回転する。これにより、【問5】X線の入射角θと散乱角 2θは、θの値によ らず常に保たれる。さらに、このような回転方法を用いると、受光スリットにおいて、常に散乱 X線が集 光するため、大きな回折強度と高い分解能を持った回折パターンを得ることができる^{[5][7]}。

図 15: ディフラクトメーターの概略図。ディフラクトメーターは、(a)X 線管球、(b) ソーラースリット、(c) 発散スリット、(d) 試料、(e) 散乱スリット、(f) ソーラースリット、(g) 受光スリット、(h) カウンターから なる。

図 16 に、試料と試料を準備するための器具を示す。本実験では、試料に塩化ナトリウム NaCl と塩化カ リウム KCl を用いた。乳鉢でこれら試料の粉末を細かくすりつぶし、すりつぶした試料をさじを用いて試 料板へとのせる。その際、試料表面が均一となるように注意する。

図 16: 試料と試料を準備するための器具。(a) 乳鉢、(b) 塩化カリウム KCl、(c) 塩化ナトリウム NaCl、(d) さじ、(e) 試料板。

4 実験手順

以下の手順により、NaCl と KCl の回折パターンを測定した。

- 1. パソコン(図14(a))、ディフラクトメーター(図14(b))、ユニットクーラー(図14(c))の電源を入 れた。
- 2. 乳鉢(図16(a))にNaCl(図16(c))を入れ、粉末がサラサラな手触りになるまですりつぶした。
- 3. さじ(図 16(d))を用いて、試料板(図 16(e))にすりつぶした NaCl の粉末をふんわりのせた。
- 4. NaClをふんわりのせた試料をディフラクトメーターの試料台に設置した。
- 5. パソコンの rigaku を起動し、NaCl をふんわりのせた試料の回折パターンを測定した。
- 6. さじを用いて、試料板にすりつぶした NaCl の粉末をぎゅっと詰めた。
- 7.4、5と同様の手順で、NaClをぎゅっと詰めた試料の回折パターンを測定した。
- 8.2~7と同様の手順で、KClの回折パターンを測定した。
- 9. パソコンの PDXL を起動し、測定した 4 つの回折パターンについて、散乱角 $2\theta[^{\circ}]$ 、ピーク強度 $I_{max}[cps]$ 、半値幅 $B[^{\circ}]$ を計測した。

4つの試料全ての測定が終了した後、パソコン、ディフラクトメーター、ユニットクーラーの電源を落と すが、このときユニットクーラーの電源は、ディフラクトメーターの電源が落ちて10分程度経過してから 落とすことに注意する。これは、ディフラクトメーターのフィラメントが非常に高温になっており、ディフ ラクトメーターの電源を落としても、すぐには熱が下がらないためである。

5 結果

この節では、本実験の測定結果と解析結果について述べる。

5.1 測定結果

図 17 に、NaCl をふんわりのせた試料、NaCl をぎゅっと詰めた試料、それぞれにおける、回折パターン を示す。また、【問 14(1)】表 1 に、NaCl をぶんわりのせた試料、NaCl をぎゅっと詰めた試料、それぞれ における、各回折線の散乱角 2 θ [°]、ピークカウント数 I_{max} [cps]、半値幅 B[°]の測定値を示す。図 18 に、 KCl をふんわりのせた試料、KCl をぎゅっと詰めた試料、それぞれにおける、回折パターンを示す。また、 【問 14(1)】表 2 に、KCl をふんわりのせた試料、KCl をぎゅっと詰めた試料、それぞれにおける、各回折 線の散乱角 2 θ [°]、ピークカウント数 I_{max} [cps]、半値幅 B[°]の測定値を示す。

5.2 解析結果

この小節では、第5.1節に示した測定結果について、

- 面指数 hkl の決定
- 相対強度 *RI*_{calc}(*hkl*)の計算

を行う。

図 17: NaCl における回折パターン。(a) ふんわりのせた試料、(b) ぎゅっと詰めた試料。横軸は散乱角 2θ [°] であり、縦軸は強度 I[cps] である。

表 1: NaCl における各回折線の散乱角 $2\theta[^{\circ}]$ 、ピークカウント数 $I_{max}[cps]$ 、半値幅 $B[^{\circ}]$ の測定値。

(a)Na	iCl をふん	わりのせた詞	忧料	(b)Na	aCl をぎゅ	っと詰めた註	计
Peak No.	$2\theta[^\circ]$	$I_{max}[cps]$	$B[^{\circ}]$	Peak No.	$2\theta[^{\circ}]$	$I_{max}[cps]$	$B[^{\circ}]$
1	27.4562	290.41	0.3951	1	27.6881	498.22	0.2315
2	31.7948	4121.12	0.3034	2	32.0234	19313.01	0.1876
3	45.5700	1857.52	0.3800	3	45.7584	3618.4	0.2200
4	54.0132	101.34	0.2286	4	54.1708	128.54	0.2209
5	56.5781	565.26	0.3899	5	56.7429	790.56	0.2200
6	66.3064	556.41	0.2323	6	66.4567	1664.56	0.1936
7	75.3906	630.5	0.3899	7	75.5241	1377.55	0.2094
8	84.1408	382.4	0.3963	8	84.2215	507.8	0.2591

図 18: KCl における回折パターン。(a) ふんわりのせた試料、(b) ぎゅっと詰めた試料。横軸は散乱角 $2\theta[^\circ]$ であり、縦軸は強度 I[cps] である。

表 2: KCl における各回折線の散乱角 $2\theta[^{\circ}]$ 、ピークカウント数 $I_{max}[cps]$ 、半値幅 $B[^{\circ}]$ の測定値。

(a)K	Cl をふんれ	っりのせた試	米斗	(b)K	Cl をぎゅ:	っと詰めた試	料
Peak No.	$2\theta[\circ]$	$I_{max}[cps]$	$B[^{\circ}]$	Peak No.	$2\theta[\circ]$	$I_{max}[cps]$	$B[^{\circ}]$
1	28.5385	1943.84	0.3499	1	28.5281	7230.11	0.1791
2	40.6946	1364.02	0.3483	2	40.7079	3951.14	0.1641
3	50.3457	425.74	0.3528	3	50.3706	1119.81	0.1645
4	58.8045	198.82	0.3168	4	58.7970	617.75	0.1458
5	66.5487	555.71	0.2994	5	66.5515	1154.63	0.1660
6	73.8402	334.5	0.3261	6	73.8675	680.54	0.1707
7	87.8674	91.82	0.3327	7	87.8007	158.18	0.2137

5.2.1 面指数 hkl の決定

【問 14(2)】表 1、表 2 にある散乱角 2 θ の測定値から、各回折線の面指数 hkl を決定したい。ピーク No. を $i(i = 1, 2, \dots)$ とし、式 (29) のブラッグの式を満たす NaCl (KCl)の ($h_ik_il_i$) 面を考える。NaCl (KCl) は立方晶であるので、($h_ik_il_i$) 面の面間隔 d_i は、式 (17) から、

$$\frac{1}{d_i^2} = \frac{h_i^2 + k_i^2 + l_i^2}{a^2} = \frac{N_i}{a^2} \iff a^2 = N_i d_i^2 \tag{62}$$

を満たす。ここで、

$$N_i = h_i^2 + k_i^2 + l_i^2 (63)$$

とした。式 (62) と式 (62) において *i* = 1 としたものを用いて、

$$N_i = \frac{a^2}{d_i^2} = N_1 \frac{d_1^2}{d_i^2} \tag{64}$$

と表せる。また、式 (29) のブラッグの式から、面間隔 d_i は散乱角 $2\theta_i$ を用いて、

$$\frac{1}{d_i^2} = \left(\frac{2\sin\theta_i}{\lambda}\right)^2 = \frac{4\sin^2\theta_i}{\lambda^2} \tag{65}$$

となる。式(62)~式(65)を用い、次の手順で各回折線の面指数を決定する。

1. 式 (65) から、散乱角の測定値 $2\theta_i$ を用いて $\frac{1}{d^2}$ を求める。

- 2. 式 (64) に、1 で求めた $\frac{1}{d^2}$ と $N_1 = 1$ を代入し、 N_i を求める。
- 3. N_i は自然数でなくてはならないので、2 で求めた N_i の小数点以下を四捨五入し、新たに N_i とする。
- 4. 式 (62) から、1 で求めた $\frac{1}{d_i^2}$ と3 で求めた N_i を用いて、各 i についての格子定数 a を求め、それを a_i とする。
- 5. 式 (64) に $N_1 = 2, 3, 4, \cdots$ と代入し、2、3、4 の手順を繰り返しながら、4 で求めた格子定数 a_i が全 ての i について一定(格子定数 a_i の分散を最小)とするような N_i の値を求める。
- 6. 式 (63) から、5 で求めた N_i を用いて面指数 h_ik_il_i を求める。

7.6 で求めた面指数 h_ik_il_i が NaCl (KCl)の消滅則を満足しているか確かめる。

表3に、表1にある散乱角2 θ の測定値から計算した、NaClをふんわりのせた試料、NaClをぎゅっと詰めた試料、それぞれにおける、各回折線の散乱角2 θ [°]、面間隔 d_{hkl} []、面指数hkl、格子定数a[]を示す。表4に、表2にある散乱角2 θ の測定値から計算した、KClをふんわりのせた試料、KClをぎゅっと詰めた試料、それぞれにおける、各回折線の散乱角2 θ [°]、面間隔 d_{hkl} []、面指数hkl、格子定数a[]を示す。ここで、波長 λ はCuK $_{\alpha}$ 線の波長 λ =1.541838[]^{(7]}とした。表3、表4から、誤差幅付きの格子定数aを求める。表3(a)から、NaClをふんわりのせた試料ではa=5.633±0.002[]となり、表3(b)から、NaClをぎゅっと詰めた試料ではa=5.633±0.002[]となり、表3(b)から、NaClをぎゅっと詰めた試料ではa=5.639[]である ^{(7]}ので、NaClをふんわりのせた試料の方が、NaClをぎゅっと詰めた試料よりも、文献値に近い結果が得られていることが分かる。また、表4(a)から、KClをぶんわりのせた試料ではa=6.277±0.004[]となる。KClでは、2つの試料から得られた格子定数aはほとんど同じ値であることが分かる。KClの格子定数aはa=6.290[]である^{(7]}ので、どちらの試料においても、文献値に近い結果が得られていることが分かる。

(a)]	NaCl をふ	んわりのせ	た試料	4	(b)	NaCl をぎ	ゅっと詰め	た試彩	ł
Peak No.	$2\theta[^{\circ}]$	$d_{hkl}[$]	hkl	a[]	Peak No.	$2\theta[^{\circ}]$	$d_{hkl}[$]	hkl	a[]
1	27.4562	3.2485	111	5.6266	1	27.6881	3.2218	111	5.5804
2	31.7948	2.8144	200	5.6289	2	32.0234	2.7949	200	5.5897
3	45.5700	1.9906	220	5.6303	3	45.7584	1.9829	220	5.6084
4	54.0132	1.6977	311	5.6307	4	54.1708	1.6931	311	5.6155
5	56.5781	1.6267	222	5.6350	5	56.7429	1.6224	222	5.6200
6	66.3064	1.4097	400	5.6387	6	66.4567	1.4068	400	5.6274
7	75.3906	1.2608	420	5.6384	7	75.5241	1.2589	420	5.6299
8	84.1408	1.1506	422	5.6365	8	84.2215	1.1497	422	5.6321

表 3: NaCl における各回折線の散乱角 $2\theta[^{\circ}]$ 、面間隔 $d_{hkl}[$]、面指数 hkl、格子定数 a[]。

表 4: KCl における各回折線の散乱角 $2\theta[^{\circ}]$ 、面間隔 $d_{hkl}[$]、面指数 hkl、格子定数 a[]。

(a)	KCl をふん	いわりのせ	た試料		(b)KClをぎゅっと詰めた試料							
Peak No.	$2\theta[^{\circ}]$	$d_{hkl}[$]	hkl	a[]	Peak No.	$2\theta[\circ]$	$d_{hkl}[$]	hkl	a[]			
1	28.5385	3.1277	200	6.2555	1	28.5281	3.1288	200	6.2577			
2	40.6946	2.2171	220	6.2710	2	40.7079	2.2164	220	6.2690			
3	50.3457	1.8124	222	6.2784	3	50.3706	1.8116	222	6.2755			
4	58.8045	1.5703	400	6.2812	4	58.7970	1.5705	400	6.2819			
5	66.5487	1.4051	420	6.2839	5	66.5515	1.4051	420	6.2837			
6	73.8402	1.2834	422	6.2872	6	73.8675	1.2830	422	6.2852			
7	87.8674	1.1111	440	6.2854	7	87.8007	1.1118	440	6.2892			

5.2.2 相対強度 *RI*_{calc}(*hkl*) の計算

【問 15】、【問 16(1)(2)(4)】表 6 に NaCl をふんわりのせた試料の、表 7 に NaCl をぎゅっと詰めた試料 の、表 1 にある散乱角 2 θ 、ピーク強度 I_{max} 、半値幅 B の測定値からそれぞれ計算した、第 2.4 節の各因 子、積分強度の理論値 $I_{calc}(hkl)$ 、相対強度の理論値 $RI_{calc}(hkl)$ 、相対強度の測定値 $RI_{obs}(hkl)$ を示す。表 8 に KCl をふんわりのせた試料の、表 9 に KCl をぎゅっと詰めた試料の、表 2 にある散乱角 2 θ 、ピーク強 度 I_{max} 、半値幅 B の測定値からそれぞれ計算した、第 2.4 節の各因子、積分強度の理論値 $I_{calc}(hkl)$ 、相 対強度の理論値 $RI_{calc}(hkl)$ 、相対強度の測定値 $RI_{obs}(hkl)$ を示す。また、図 19、図 20 に、面指数 hkl に 対する NaCl、KCl の相対強度の理論値 $RI_{calc}(hkl)$ と測定値 $RI_{obs}(hkl)$ をそれぞれ示す。表 6 ~ 表 9 の各 数値は、以下のように求めた。面指数 hkl、格子定数 a は第 5.2.1 節で求められているので、それらを用い て式 (17) から面間隔 dを求め、得られた面間隔 dを用いて式 (29) から散乱角 2 θ を求めた。また、Na⁺ イ オン、K⁺ イオン、Cl⁻ イオンの原子散乱因子 $f_{Na^+}(\frac{\sin\theta}{\lambda})$ 、 $f_{Cl^-}(\frac{\sin\theta}{\lambda})$ は、

$$f\left(\frac{\sin\theta}{\lambda}\right) = \sum_{j=1}^{4} a_j e^{-b_j \left(\frac{\sin\theta}{\lambda}\right)^2} + c \tag{66}$$

により求めた。ここで、 a_j 、 b_j 、cには表 5 の値を用いた。構造因子 F^2 は式 (38)の F_{NaCl} 、または、式 (39)の F_{KCl} 、ローレンツ偏光因子 LPは式 (58)、デバイワーラー因子 DWは式 (60)、及び、式 (61)から求めた(NaClにおいて $C = 1.5[^{-2}]^{[9]}$ とし、KClにおいて $C = 2.0[^{-2}]^{[10]}$ とした)。積分強度の理論値 $I_{calc}(hkl)$ は、

$$I_{calc}(hkl) = F^2 m L P D W$$

により求め、積分強度の測定値 $I_{obs}(hkl)$ は、式 (40) の I_{int} を $I_{obs}(hkl)$ として求めた。相対強度の理論値 $RI_{calc}(hkl)$ 、相対強度の測定値 $RI_{obs}(hkl)$ は、比率 $\frac{100}{\max I_{calc}(hkl)}$ 、 $\frac{100}{\max I_{obs}(hkl)}$ を求め、この比率を $I_{calc}(hkl)$ 、 $I_{obs}(hkl)$ に乗じて求めた。

(67)

表 5: Na⁺ イオン、K⁺ イオン、Cl⁻ イオンの原子散乱因子 f の係数 a_j 、 b_j 、 $c^{[8]}$ 。

イオン	a_1	b_1	a_2	b_2	a_3	b_3	a_4	b_4	с
Na^+	3.2565	2.6671	3.9362	6.1153	1.3998	0.2001	1.0032	14.039	0.404
K^+	7.9578	12.6331	7.4917	0.7674	6.359	-0.002	1.1915	31.9128	-4.9978
Cl^-	18.2915	0.0066	7.2084	1.1717	6.5337	19.5424	2.3386	60.4486	-16.378

表 6: NaCl をふんわりのせた試料における (*hkl*) 面の相対強度の理論値 *RI_{calc}*(*hkl*) と測定値 *RI_{obs}*(*hkl*)。 表中の x は $x = \frac{\sin \theta}{\lambda}$ である。また、P.N. は Peak No.、 f_{Na^+} は $f_{Na^+}(\frac{\sin \theta}{\lambda})$ 、 f_{Cl^-} は $f_{Cl^-}(\frac{\sin \theta}{\lambda})$ 、 I_{calc} は I_{calc} (*hkl*)、*RI_{calc}*(*hkl*) であり、*RI_{obs}* は *RI_{obs}*(*hkl*) である。

P.N.	hkl	$2\theta[\circ]$	x[-1]	f_{Na+}	f_{Cl} -	F^2	m	LP	$x^{2}[-2]$	DW	I_{calc}	RI_{calc}	RI_{obs}
1	111	27.4	0.154	8.98	13.6	341	8	16.4	0.0236	0.932	41600	8.70	9.18
2	200	31.8	0.178	8.68	12.7	7340	6	12.0	0.0315	0.910	479000	100	100
3	220	45.5	0.251	7.63	10.6	5290	12	5.39	0.0630	0.828	284000	59.2	56.5
4	311	54.0	0.294	6.98	9.63	112	24	3.67	0.0867	0.771	7630	1.59	1.85
5	222	56.6	0.307	6.78	9.39	4190	8	3.29	0.0945	0.753	83000	17.3	17.6
6	400	66.4	0.355	6.09	8.67	3490	6	2.31	0.126	0.685	33200	6.93	10.3
7	420	75.5	0.397	5.51	8.19	3000	24	1.79	0.158	0.623	80600	16.8	19.7
8	422	84.2	0.435	5.03	7.83	2640	24	1.51	0.189	0.567	54500	11.4	12.1

表 7: NaCl をぎゅっと詰めた試料における (*hkl*) 面の相対強度の理論値 $RI_{calc}(hkl)$ と測定値 $RI_{obs}(hkl)$ 。 表中の x は $x = \frac{\sin\theta}{\lambda}$ である。また、P.N. は Peak No.、 f_{Na^+} は $f_{Na^+}(\frac{\sin\theta}{\lambda})$ 、 f_{Cl^-} は $f_{Cl^-}(\frac{\sin\theta}{\lambda})$ 、 I_{calc} は $I_{calc}(hkl)$ 、 RI_{calc} は $RI_{calc}(hkl)$ であり、 RI_{obs} (*hkl*) である。

P.N.	hkl	$2\theta[\circ]$	x[-1]	f_{Na^+}	f_{Cl} -	F^2	m	LP	$x^{2}[-2]$	DW	I_{calc}	RI_{calc}	RI_{obs}
1	111	27.5	0.154	8.97	13.6	339	8	16.2	0.0238	0.931	41100	8.67	3.18
2	200	31.9	0.178	8.67	12.7	7320	6	11.9	0.0317	0.909	473000	100	100
3	220	45.7	0.252	7.62	10.5	5270	12	5.35	0.0635	0.827	280000	59.1	22.0
4	311	54.2	0.295	6.96	9.61	112	24	3.63	0.0873	0.770	7520	1.59	0.784
5	222	56.8	0.309	6.77	9.37	4170	8	3.26	0.0952	0.752	81800	17.3	4.80
6	400	66.7	0.356	6.07	8.66	3470	6	2.29	0.127	0.683	32600	6.90	8.89
7	420	75.8	0.398	5.49	8.17	2990	24	1.78	0.159	0.621	79300	16.8	7.96
8	422	84.6	0.436	5.01	7.82	2630	24	1.51	0.190	0.565	53700	11.3	3.63

表 8: KCl をふんわりのせた試料における (hkl) 面の相対強度の理論値 $RI_{calc}(hkl)$ と測定値 $RI_{obs}(hkl)$ 。 表中の x は $x = \frac{\sin\theta}{\lambda}$ である。また、P.N. は Peak No.、 f_{K^+} は $f_{K^+}(\frac{\sin\theta}{\lambda})$ 、 f_{Cl^-} は $f_{Cl^-}(\frac{\sin\theta}{\lambda})$ 、 I_{calc} は $I_{calc}(hkl)$ 、 RI_{calc} は $RI_{calc}(hkl)$ であり、 RI_{obs} は $RI_{obs}(hkl)$ である。

P.N.	hkl	$2\theta[$ °]	x[-1]	f_{K^+}	f_{Cl} -	F^2	m	LP	$x^{2}[-2]$	DW	I_{calc}	RI_{calc}	RI_{obs}
1	200	28.4	0.159	15.0	13.4	12900	6	15.2	0.0254	0.903	1060000	100	100
2	220	40.7	0.225	13.0	11.2	9390	12	6.96	0.0508	0.816	640000	60.4	69.9
3	222	50.4	0.276	11.6	10.0	7450	8	4.30	0.0761	0.737	189000	17.8	22.1
4	400	58.8	0.319	10.5	9.21	6240	6	3.02	0.102	0.666	75300	7.09	9.26
5	420	66.6	0.356	9.78	8.66	5440	24	2.30	0.127	0.602	180000	17.0	24.5
6	422	74.0	0.390	9.20	8.26	4880	24	1.86	0.152	0.544	118000	11.2	16.0
7	440	88.0	0.451	8.39	7.70	4140	12	1.44	0.203	0.444	31800	3.00	4.49

表 9: KCl をぎゅっと詰めた試料における (*hkl*) 面の相対強度の理論値 $RI_{calc}(hkl)$ と測定値 $RI_{obs}(hkl)$ 。 表中の x は $x = \frac{\sin\theta}{\lambda}$ である。また、P.N. は Peak No.、 f_{K^+} は $f_{K^+}(\frac{\sin\theta}{\lambda})$ 、 f_{Cl^-} は $f_{Cl^-}(\frac{\sin\theta}{\lambda})$ 、 I_{calc} は $I_{calc}(hkl)$ 、 RI_{calc} は $RI_{calc}(hkl)$ であり、 RI_{obs} は $RI_{obs}(hkl)$ である。

P.N.	hkl	$2\theta[$ °]	x[-1]	f_{K^+}	f_{Cl} -	F^2	m	LP	$x^{2}[-2]$	DW	I_{calc}	RI_{calc}	RI_{obs}
1	200	28.4	0.159	15.0	13.4	12900	6	15.2	0.0254	0.903	1060000	100	100
2	220	40.7	0.225	13.0	11.2	9390	12	6.96	0.0508	0.816	640000	60.4	50.1
3	222	50.4	0.276	11.6	10.0	7450	8	4.30	0.0761	0.737	189000	17.8	14.2
4	400	58.8	0.319	10.5	9.21	6240	6	3.02	0.102	0.666	75300	7.09	6.96
5	420	66.6	0.356	9.78	8.66	5440	24	2.30	0.127	0.602	180000	17.0	14.8
6	422	74.0	0.390	9.20	8.26	4880	24	1.86	0.152	0.544	118000	11.2	8.97
7	440	88.0	0.451	8.39	7.70	4140	12	1.44	0.203	0.444	31800	3.00	2.61

図 19: 面指数 hkl に対する NaCl の相対強度の理論値 $RI_{calc}(hkl)$ と測定値 $RI_{obs}(hkl)$ 。横軸は面指数 hkl であり、縦軸は相対強度 RI(hkl) である。青い線は相対強度の理論値 $RI_{calc}(hkl)$ 、オレンジの線は NaCl をふんわりのせた試料の相対強度の測定値 $RI_{obs}(hkl)$ であり、赤い線は NaCl をぎゅっと詰めた試料の相対 強度の測定値 $RI_{obs}(hkl)$ である。

図 20: 面指数 hkl に対する KCl の相対強度の理論値 $RI_{calc}(hkl)$ と測定値 $RI_{obs}(hkl)$ 。横軸は面指数 hkl であり、縦軸は相対強度 RI(hkl) である。青い線は相対強度の理論値 $RI_{calc}(hkl)$ 、オレンジの線は KCl を ふんわりのせた試料の相対強度の測定値 $RI_{obs}(hkl)$ であり、赤い線は KCl をぎゅっと詰めた試料の相対強度の測定値 $RI_{obs}(hkl)$ である。

図 19 から、NaCl をふんわりのせた試料では、相対強度の理論値 $RI_{calc}(hkl)$ と測定値 $RI_{obs}(hkl)$ はよく ー致していることが分かる。一方、NaCl をぎゅっと詰めた試料では、(200) 面と (400) 面において、理論値 $RI_{calc}(hkl)$ と測定値 $RI_{obs}(hkl)$ はよく一致しているが、他の面においては、測定値 $RI_{obs}(hkl)$ が理論値 $RI_{calc}(hkl)$ より大分小さくなっている。また、図 20 から分かるように、KCl をふんわりのせた試料では、 測定値 $RI_{obs}(hkl)$ が理論値 $RI_{calc}(hkl)$ より大きくなっている。KCl をぎゅっと詰めた試料では、NaCl と 同様に、(200) 面と (400) 面において、理論値 $RI_{calc}(hkl)$ と測定値 $RI_{obs}(hkl)$ はよく一致しているが、他 の面においては、測定値 $RI_{obs}(hkl)$ が理論値 $RI_{calc}(hkl)$ より小さくなっている。さらに、図 19 の NaCl では、(111) 面と (311) 面からの回折線が観測できたが、図 20 の KCl では、それらは見当たらない。これ らのことについては、第 6 節において考察する。

6 考察

この節では、

- 高角側のダブレット
- NaCl (KCl)の(h00)面における回折強度の測定値 Iobs(h00)の増大
- KClの相対強度の理論値 RI_{calc}(hkl) に対する測定値 RI_{obs}(hkl) のずれ
- KClの(111)面と(311)面の回折線の消失

について考察する。

6.1 高角側のダブレット

【問 4】本実験のディフラクトメーターでは、第 2.1.2 節で述べたフィルターや結晶モノクロメーターを 用いていないため、入射 X 線には K_α 線と K_β 線の両方が含まれる。K_α 線の波長を λ とし、K_β 線の波長 を λ' とすると、K_β 線は K_α 線よりもそのエネルギーが高いことから、 $\lambda' = \lambda - \Delta\lambda < \lambda$ となる。式 (29) のブラッグの式から、散乱角 2 θ は波長 λ に依存して変化するため、波長 λ が異なれば回折線の現れる角度 も異なる。そこで、波長 λ のずれ $\Delta\lambda$ に対する角度 θ のずれ $\Delta\theta$ を求め、K_α 線と K_β 線の 2 つの波長を含 む X 線による回折線の様子を探ろう。 $\Delta\theta$ は、 $\Delta\lambda \ll 1$ より、

$$\Delta \theta = \theta(\lambda) - \theta(\lambda') = \theta(\lambda) - \theta(\lambda - \Delta \lambda) \sim \frac{d\theta}{d\lambda} \Delta \lambda$$
(68)

と近似できる。式 (29) のブラッグの式から、

$$\frac{d\theta}{d\lambda} = \frac{d\theta}{d(2d\sin\theta)} \frac{d(2d\sin\theta)}{d\lambda} = \left\{\frac{d(2d\sin\theta)}{d\theta}\right\}^{-1} \frac{d\lambda}{d\lambda} = \frac{1}{2d\cos\theta}$$
(69)

となり、角度のずれ $\Delta \theta$ は、

$$\Delta \theta = \frac{1}{2d\cos\theta} \Delta \lambda \tag{70}$$

となる。式 (70) から、角度 θ が大きくなるほど $\Delta \theta$ が大きくなることが分かる。つまり、 K_{α} 線と K_{β} 線は低角側では殆ど重なっているが、高角側では 2 本の回折線 (ダブレット)となって観測される。しかし、図 17、図 18 から分かるように、高角側の回折線にダブレットは見当たらない。その理由として、本来 2 本ある回折線が 1 つに重なって見えていることが予想される。もしそうであれば、式 (70) から求めた $\Delta \theta$ と回 折線の幅 w が $w > \Delta \theta$ を満たすはずである。

本実験に用いた X 線は CuK 線であるため、 $\lambda = 1.541838$ 、 $\lambda' = 1.392218$ 、 $\Delta \lambda = 0.14962$ となる^[7]。回 折線の面指数 *hkl* と格子定数 *a* は第 5.2.1 節において得られているので、それらを用いて、式 (17)、式 (29)、 式 (70) から角度のずれ $\Delta \theta$ を求める。一方、回折線の幅 *w* は半値幅 B を用いて $w \sim 2B$ と近似できる ^[7]。 表 10 に、NaCl、KCl をふんわりのせた試料における角度のずれ $\Delta \theta$ と回折線の幅 *w* を示す。

(;	a)NaCl		((b)KCl	
Peak No.	$\Delta \theta[^{\circ}]$	$w[^{\circ}]$	Peak No.	$\Delta \theta[^{\circ}]$	$w[^{\circ}]$
1	1.357	0.7902	1	1.409	0.6998
2	1.582	0.6068	2	2.059	0.6966
3	2.334	0.7600	3	2.614	0.7056
4	2.832	0.4572	4	3.136	0.6336
5	2.994	0.7798	5	3.654	0.5988
6	3.637	0.4646	6	4.188	0.6522
7	4.303	0.7798	7	5.370	0.6654
8	5.024	0.7926			

表 10: NaCl、KCl をふんわりのせた試料における角度のずれ $\Delta \theta^{\circ}$ と回折線の幅 w° 。

表 10 から、高角側のみならず低角側でも $w < \Delta \theta$ となっており、予想 ($w > \Delta \theta$) に反していることが 分かる。また、最も高角の回折線では、角度のずれ $\Delta \theta$ が $\Delta \theta \sim 5$ [°] にもなるのに、図 17、図 18 にはダブ レットが全く見当たらない。これらのことから、図 17、図 18 の回折パターンを得た際、K_β線が取り除か れていたと考えることが妥当であるように思われる²。

6.2 NaCl(KCl)の(h00)面における回折強度の測定値 I_{obs}(h00)の増大

【問 16(5)】NaClをふんわりのせた試料では、相対強度の理論値 $RI_{calc}(hkl)$ と測定値 $RI_{obs}(hkl)$ はよく一致しているが、NaClをぎゅっと詰めた試料では、(200) 面と (400) 面以外の面においては、測定値 $RI_{obs}(hkl)$ が理論値 $RI_{calc}(hkl)$ より大分小さくなっている。(h00) 面(h = 2, 4)以外の面の測定値 $RI_{obs}(hkl)$ が大分小さくなっている。(h00) 面(h = 2, 4)以外の面の測定値 $RI_{obs}(hkl)$ が大分小さくなっている理由として、(h00) 面の積分強度の測定値 $I_{obs}(h00)$ が他の面に比べて大きくなっていることが考えられる。実際、表1に基づいて、NaClをぎゅっと詰めた試料とふんわりのせた試料において、測定値 $I_{obs}(hkl)$ ($I_{obs}(hkl) = I_{max}B$)を比較すると、(200) 面と (400) 面以外の面ではほぼ等しいが、(200) 面では約3倍ほど、(400) 面では約2.5倍ほど増加している。

(h00) 面の測定値 *I*_{obs}(h00) のみが増加していることから、粉末試料中の結晶粒の多くが (h00) 面を向い ていると考えられる。これは、NaCl が立方晶であるため、NaCl の粉末試料を試料板にぎゅっと詰めると、 試料板上に結晶粒がきれいに敷き詰められたような構造を取り、多くの (h00) 面が試料板に平行に並んだ結 果、(h00) 面による X 線回折が多く観測されるようになるからである。このように、粉末結晶の詰め方に よって、特定の方向を向いた結晶粒が多くなることがある。これを「選択配向」という ^[11]。

KCl も立方晶であるため、KCl をぎゅっと詰めた試料において、NaCl と同様の選択配向が観測されるは ずである。確かに、(200)面と(400)面以外の面では減少しているが、その程度は非常に小さい。これは、 KCl をぎゅっと詰めた試料を作成した際、KCl の粉末を試料板にあまり強く押し付けなかったためか、試料

 $^{^2}$ 測定結果のプリントを確認してみると、フィルタの項目に「 K_β フィルタ」と記載されていました。測定をした際にソフトの使い方を誤ってしまったのか、あるいは、始めからそのような設定になっていたのか、いずれにせよ、装置の設定を見直して頂く必要があるかもしれません。

板にのせた KCI の粉末の量が少なかったために、結晶粒間の隙間が増えてしまい、KCI がきれいに敷き詰められなかったせいではないかと思われる。

6.3 KClの相対強度の理論値 RI_{calc}(hkl) に対する測定値 RI_{obs}(hkl) のずれ

【問 16(5)】KCl をふんわりのせた試料においては、(200)面以外では、相対強度の理論値 $RI_{calc}(hkl)$ よりも測定値 $RI_{obs}(hkl)$ の方が大きかった。測定値 $RI_{obs}(hkl)$ は、比率 $\frac{100}{\max I_{obs}(hkl)}$ を求め、この比率を $I_{obs}(hkl)$ に乗じて計算した。このとき、もし、max $I_{obs}(hkl)$ に他の $I_{obs}(hkl)$ に比べて大きな誤差がのっ ていたとすると、比率 $\frac{100}{\max I_{obs}(hkl)}$ が本来の値から大きく狂ってしまい、max $I_{obs}(hkl)$ 以外では、測定値 $RI_{obs}(hkl)$ が大きくずれてしまうことになる。そこで、Peak No. を jとし、j番目の積分強度の測定値 I_{obsj} を基準とした比率 γ_j 、

$$\gamma_j = \frac{RI_{calcj}}{I_{obsj}} \tag{71}$$

を新たに導入する。比率 γ_j に対する k 番目の相対強度の測定値 RI_{obsjk} 、

$$RI_{obsjk} = \gamma_j I_{obsk} \tag{72}$$

から、比率 γ_j に対する相対強度の測定値 RI_{obsjk} と理論値 RI_{calck} のずれ ΔRI_j 、

$$\Delta RI_j = \sum_k \frac{|RI_{obsjk} - RI_{calck}|}{RI_{calck}} \tag{73}$$

を計算し、 $\Delta RI_{\tilde{j}} = \min \Delta RI_j$ となる \tilde{j} を求め、その \tilde{j} についての $RI_{obs\tilde{j}k}$ を新たに相対強度の測定値とす る。表 11 に、KClをふんわりのせた試料において、式 (71)、式 (72)、式 (73) から求めた、比率 γ_j に対す る相対強度の測定値と理論値のずれ ΔRI_j を示す。表 11 から、4 番目のピークにおいて、 ΔRI が最も小さ いことが分かる。そこで、 $\tilde{j} = 4$ として、式 (72) から相対強度の測定値 $RI_{obs4k}(hkl)$ を求める。図 21 に、 相対強度の理論値 $RI_{calc}(hkl)$ と $\tilde{j} = 4$ としたときの相対強度の測定値 $RI_{obs4k}(hkl)$ を示す。

表 11: KCl をふんわりのせた試料における、比率 γ_j に対する相対強度の測定値と理論値のずれ ΔRI_j の 様子。

Peak No.	γ_j	ΔRI_j
1	0.1470	2.077
2	0.1271	1.116
3	0.1184	0.8358
4	0.1126	0.7459
5	0.1022	0.7722
6	0.1024	0.7690
7	0.09811	0.9431

図 21 から、(200) 面以外では、相対強度の測定値 $RI_{obs4k}(hkl)$ は理論値 $RI_{calc}(hkl)$ とよく一致していることが分かる。図 20 と見比べると、元の測定値 $RI_{obs}(hkl) = RI_{obs1k}(hkl)$ よりも新たな測定値 $RI_{obs4k}(hkl)$ の方が、理論値 $RI_{obs}(hkl)$ とのずれが小さくなっていることが確認できる。

図 21: 相対強度の理論値 $RI_{calc}(hkl) \geq \tilde{j} = 4$ としたときの相対強度の測定値 $RI_{obs4k}(hkl)$ 。横軸は面指数 hkl であり、縦軸は相対強度 RI である。青い線は相対強度の理論値 $RI_{calc}(hkl)$ であり、オレンジの線は KCl をふんわりのせた試料の相対強度の測定値 $RI_{obs4k}(hkl)$ である。

6.4 KClの(111)面と(311)面の回折線の消失

【問 16(5)】NaCl では、(111) 面と(311) 面からの回折線が観測できたが、KCl では見られない。NaCl と KCl は単位格子中の原子配置が同じであるので、式(38)、式(39) から分かるように、回折線の消滅則(h, k, lが混合のときに回折線が消滅する)は同じである。にもかかわらず、NaCl では観測できた回折線が、KCl には見当たらない。(111) 面や(311) 面はh, k, lが非混合であり、かつ、h + k + lが奇数であるため、式(38)、式(39) から、NaCl の構造因子 F_{NaCl} と KCl の構造因子 F_{KCl} は、

$$F_{NaCl} = f_{Na^+} \left(\frac{\sin\theta}{\lambda}\right) - f_{Cl^-} \left(\frac{\sin\theta}{\lambda}\right)$$

$$F_{KCl} = f_{K^+} \left(\frac{\sin\theta}{\lambda}\right) - f_{Cl^-} \left(\frac{\sin\theta}{\lambda}\right)$$
(74)
(75)

となり、Na⁺ イオンと Cl⁻ イオンの原子散乱因子の差、K⁺ イオンと Cl⁻ イオンの原子散乱因子の差として与えられる。ここで、原子散乱因子 f に注目する。原子散乱因子 f とは、1 つの原子内の複数の電子によって X 線が散乱されるとき、散乱された X 線同士の干渉によって散乱 X 線の振幅がどのように変化する かを考慮するための因子であり、原子の種類や散乱角 20 の値に依存して変化する。散乱角 20 = 0 のとき、原子中の各電子によって散乱された X 線の間には光路差が無いため、散乱 X 線の振幅は、入射 X 線の振幅 を電子の個数 (つまり原子番号)倍したもので与えられる。Na⁺ イオンの電子の数は 11 であり、Cl⁻ イオンの電子の数は 18 であるため、散乱角 20 = 0 のとき、Na⁺ イオンの原子散乱因子と Cl⁻ イオンの原子散乱因子と Cl⁻ イオンの原子散乱因子と Cl⁻ イオンの原子散乱因子と Cl⁻ イオンの原子散乱因子と Cl⁻ イオンの原子散乱因子との差が 0 になり、構造因子 F_{KCl} は 0 になる。図 22 に、式(66)と表 5 の値から計算した、Na⁺ イオン、K⁺ イオン、Cl⁻ イオンの原子散乱 因子 $f_{Na^+}(\frac{\sin\theta}{\lambda})$ 、 $f_{Cl^-}(\frac{\sin\theta}{\lambda})$ の様子を示す。図 22 から、(111)面と(311)面を含む各散乱角 20 において、 $f_{K^+}(\frac{\sin\theta}{\lambda})$ と $f_{Cl^-}(\frac{\sin\theta}{\lambda})$ の値がほとんど変わらないことが分かる。よって、K⁺ イオンの原子散乱 因子と Cl⁻ イオンの原子散乱 因子と Cl⁻ イオンの原子散乱 因子と Cl⁻ イオンの原子散乱 B子と Cl⁻ (111)面と(311)面の回折線が 消失する。

図 22: $\frac{\sin \theta}{\lambda}$ に対する原子散乱因子 f の様子。横軸は $\frac{\sin \theta}{\lambda}$ [⁻¹] であり、縦軸は原子散乱因子 f である。青い線は K⁺ イオンの原子散乱因子、緑の線は Cl⁻ イオンの原子散乱因子であり、赤い線は Na⁺ イオンの原子散乱因子である。

参考文献

- [1] Wikipedia, "ヴィルヘルム・レントゲン", Wikipedia (2014), 2014 年 11 月 3 日取得.
- [2] 鈴木賢治著,"X線材料強度史年表", http://x-ray.ed.niigata-u.ac.jp/museum/html/nenpyo1.html (1996), 2014年6月30日取得.
- [3] Wikipedia, "X 線回折", Wikipedia (2014), 2014 年 11 月 3 日取得.
- [4] 浜谷望著,"物理実験学 講義プリント"(2013).
- [5] 早稲田嘉夫,松原英一郎著,"材料学シリーズ X線構造解析 原子の配列を決める",内田老鶴圃 (2007).
- [6] Marcus C. Newton *et al.*, "Time-Resolved Coherent Diffraction of Ultrafast Structural Dynamics in a Single Nanowire", *Nano Letters*, 14 (5) (2014).
- [7] B.D.Cullity 著 (松村源太郎訳), "新版 X 線回折要論", アグネ承風社 (2012).
- [8] 浜谷望, "X 線回折実験 プリント" (2014).
- [9] A.W.Pryor, "Debye-Waller factors in crystals of the sodium chloride structure", Acta Cryst 20 (1966).
- [10] K.Srinivas and D.B.Sirdeshmukh, "X-ray determination of the mean Debye-Waller factors and Debye temperatures of KCl-RbCl mixed crystals", Pramana-J. Phys. **31** (1988).
- [11] 浜谷望, 私信 (2014).