誘電率

野澤恵理花1

共同実験者

FYさん

実験日時

平成 26 年	6月	16日	13 時 20 分	~	16 時 40 分
平成 26 年	6月	23 日	13 時 20 分	~	18 時 30 分
平成 26 年	6月	30日	13 時 20 分	~	16 時 40 分
平成 26 年	7月	7日	13 時 20 分	~	18時 30分 (解析及び議論)
平成 26 年	7月	14日	13 時 20 分	~	17 時 20 分

要旨

複素誘電率は、物質の分子構造や分子運動を探る上で、非常に重要な量である。本実験で は、複素誘電率と物質内の分子運動の関係を理解するために、鎖状高分子(アクリル、塩化ビ ニル、テフロン)・ガラスの複素誘電率の周波数依存性や、BaTiO₃の複素誘電率の温度依存 性を測定した。測定した複素誘電率の周波数依存性を各緩和過程に分解し、解析することで、 鎖状高分子の振る舞い(双極子モーメントの回転)について考察する。また、測定した複素誘 電率の温度依存性から、キュリー温度を求め、BaTiO₃の振る舞い(構造相転移に伴うイオン の運動の変化)について考察する。

 $^{^1{\}rm g1220}217@edu.cc.ocha.ac.jp$

1 序論

誘電率により、誘電体の分極の大きさを知ることができる^{[1][2]}。誘電体は、電場をかけられると、誘電体 内の正・負電荷が変位したり、双極子モーメントが配向したりすることで、分極する。すなわち、分極の 仕方は、誘電体の分子構造や分子運動に依存する。誘電率は普通、実数により表されるが、分極に時間を 要するときには、分極の速さを考慮した量として、複素数による複素誘電率が用いられる。複素誘電率は、 分極の大きさや速さによって決まるので、電場の強さや周波数、温度に対する複素誘電率の変化を調べるこ とは、誘電体の分子運動の様子を理解する上で、非常に重要である。特に、誘電体を誘電材料や絶縁材料と して利用するためには、複素誘電率を用いて、誘電体の振る舞いを理解する必要がある。

実際、そのようにして振る舞いが理解された誘電体に、高い誘電率を持ち、強誘電性や圧電性、焦電性を 示す強誘電体があり、様々な分野で応用されている。図1に、強誘電体の応用例を示す。図1(a)の積層セ ラミックコンデンサーは、高い誘電率を持つ強誘電体を用いた、大きな静電容量(積層構造をとることによ り、静電容量をさらに増やすことが可能)を持つコンデンサーである。図1(b)の強誘電体メモリーは、強 誘電体の強誘電性から、電源を切っても(電場をかけるのをやめても)自発分極により、情報が失われな いメモリーである。図1(c)の強誘電性フィルムスピーカーは、強誘電体の圧電性から、交流電場をかける と音を発する(強誘電体が振動する)非常に薄型のスピーカーである。図1(d)の赤外線センサーは、強誘 電体の焦電性から、赤外線による温度変化に伴う電圧変化(自発分極が変化)を用いて、赤外線を検出で きるセンサーである。このセンサーは、光電効果を利用した赤外線センサーに比べると、感度は多少落ち るが、常温で使えるという利点がある。このように、誘電体は様々な分野で応用され、私達の生活に役立っ ている。

以下では、鎖状高分子(アクリル、塩化ビニル、テフロン)・ガラスの複素誘電率の周波数依存性や、BaTiO₃ の複素誘電率の温度依存性を測定し、その周波数依存性を各緩和過程に分解し、解析することで、鎖状高分 子の振る舞い(双極子モーメントの回転)について考察する。また、測定した複素誘電率の温度依存性か ら、キュリー温度を求め、BaTiO₃の振る舞い(構造相転移に伴うイオンの運動の変化)について考察する。

図 1: 強誘電体の応用例。(a) 積層セラミックコンデンサー、(b) 強誘電体メモリー、(c) 強誘電性フィルム スピーカー、(d) 赤外線センサー。

2 原理

2.1 誘電分極

誘電体^{[1][2]}に電場をかけると、誘電体内の原子や分子が変位したり、双極子モーメントが配向したりすることで、双極子モーメントが誘起される(誘起双極子モーメント)。この現象を、誘電分極と言う。誘電分極には、

- 電子分極
- 原子分極
- 双極子分極

などの種類がある。ここで、電子分極・原子分極は、正・負電荷の変位による分極であることから、変位分 極と呼ばれ、双極子分極は、双極子モーメントの配向による分極であることから、配向分極と呼ばれる。以 下、それぞれの分極の原理について述べる^[3]。

2.1.1 電子分極

電子雲の原子核に対する相対位置の変化による分極を電子分極と言う。図2に、電子分極の様子を示す。 電場をかけていないとき、誘電体内の原子では、原子核の位置と電子雲の中心位置が一致するため、分極は 生じない(図2(a))。電場Eをかけたとき、原子核は電場のマイナス方向、電子は電場のプラス方向に引き 寄せられる(電子の質量が原子核に比べて十分小さいことから、電子雲の中心位置のみが変位したとみな すことができる)。これにより、原子核の位置と電子雲の中心位置がずれ、双極子モーメントpが誘起され る(図2(b))。

図 2: 電子分極の模式図。(a) 電場をかけていないとき、(b) 電場E をかけたとき。赤い丸は原子核、青い丸は電子であり、緑の矢印は双極子モーメントp を表し、水色の矢印は電場E を表す。

2.1.2 原子分極

正・負に帯電した原子の相対位置の変化による分極を原子分極と言う。図3に、イオン結晶における原子 分極の様子を示す。電場をかけていないとき、陽イオンと陰イオンが規則正しく並んでいるため、分極は生 じない(図3(a))。電場Eをかけたとき、陽イオンは電場のマイナス方向、陰イオンは電場のプラス方向に 引き寄せられる。これにより、電荷が偏り、双極子モーメントpが誘起される(図3(b))。

a	b
$\circ \circ \circ \circ \circ \circ$	60 60 60
$\circ \circ \circ \circ \circ \circ$	60 60 60
$\circ \circ \circ \circ \circ \circ$	69 69 69
$\circ \circ \circ \circ \circ \circ$	GO GO GO
$\circ \circ \circ \circ \circ \circ$	60 60 60
$\circ \circ \circ \circ \circ \circ$	GO GO GO
	— E

図 3: 原子分極の模式図。(a) 電場をかけていないとき、(b) 電場E をかけたとき。赤い丸は陽イオン、青い丸は陰イオンであり、緑の矢印は双極子モーメントp を表し、水色の矢印は電場E を表す。

2.1.3 双極子分極

極性分子内の双極子モーメントの配向による分極を双極子分極と言う。図4に、双極子分極の様子を示す。電場をかけていないとき、各双極子モーメントは、熱運動によってランダムな方向を向いているため、誘電体全体として、分極は生じない(図4(a))。電場Eをかけたとき、各双極子モーメントは、熱運動に逆らって電場の方向に向きを変える。これにより、誘電体全体として、電場方向の双極子モーメントpが誘起される(図4(b))。

図 4: 双極子分極の模式図。(a) 電場をかけていないとき、(b) 電場E をかけたとき。緑の楕円は極性分子であり、白い矢印は双極子モーメントp を表し、水色の矢印は電場E を表す。

2.2 分極の速さと周波数依存性

電場をかけてから分極が生じるまでには、ある程度の時間が必要となる。電子分極や原子分極では、分極 の速さは、電子振動や原子振動の速さに相当するため、分極は瞬時に形成される(このことから、これらの 分極は、瞬時分極とも呼ばれる)。一方、双極子分極では、双極子モーメントが電場の方向へ配向するとき、 他の分子からその運動を妨げられるため、電子分極や原子分極と比べると、分極するまでに長い時間を必 要とする。

分極の種類により、誘電体の電場に対する応答の速さが異なることから、交流電場の周波数に対する応答 も異なる。図5に、交流電場の周波数 f に対する分極率 α の様子を示す。図5から分かるように、低周波 領域では、双極子分極が生じるが、周波数が高くなると、双極子モーメントの配向が追いつかなくなること で、双極子分極は生じなくなり、電子分極や原子分極のみとなる。

図 5: 分極率の周波数依存性。横軸は交流電場の周波数 f であり、縦軸は分極率 α である。

2.3 複素誘電率

コンデンサー間を誘電体で満たしたとき、コンデンサーに流れる交流電流を考えよう。第 2.2 節で述べた ように、電場をかけてから分極が生じるまでに、ある程度の時間を要するため、コンデンサーを流れる交流 電流には、位相の遅れが生じる。この遅れを考慮するために、複素誘電率 ε^* を導入する。複素誘電率 ε^* は、

$$\varepsilon^* = \varepsilon' - i\varepsilon'' \tag{1}$$

と表される。ここで、 ε' は誘電率であり、 ε'' は誘電損率である。 ε'' は、 ε' と誘電正接 tan δ を用いて、

$$\varepsilon'' \equiv \varepsilon' \tan \delta \tag{2}$$

と定義される。δは、コンデンサーを流れる交流電流の充電電流に対する位相の遅れを表し、

$$\tan \delta = \frac{|\operatorname{Re} I|}{|\operatorname{Im} I|} = \frac{|I_l|}{|I_c|} \tag{3}$$

と与えられる。ここに、Iはコンデンサーを流れる交流電流、

$$I = I_l + iI_c \tag{4}$$

であり、 I_l はIの損失電流成分、 I_c はIの充電電流成分を表し、それぞれ、

$$I_l = GV \tag{5}$$

 $I_c = \omega CV$

となる。ここで、G は分極による電力損失を表すための適当な量であり、C は誘電体を満たしたコンデン サーの静電容量である。図 6 に、交流電流 I、損失電流成分 I_l 、充電電流成分 I_c の位相の関係を示す。

図 6: 交流電流 I、損失電流成分 I_l 、充電電流成分 I_c の位相の関係。交流電流 I は、損失電流成分 I_l により、充電電流成分 I_c より位相が δ だけ遅れる。

複素誘電率 ε^* を測定することで、誘電体内に生じている分極の様子を知ることができる。本実験では、複素比誘電率 ε_r^* を測定した。複素比誘電率 ε_r^* は、複素誘電率 ε^* を真空の誘電率 $\varepsilon_0 = 8.854187817 \times 10^{-12} [\text{Fm}^{-1}]^{[4]}$ で割った値、

$$\varepsilon_r^* \equiv \frac{\varepsilon^*}{\varepsilon_0} \tag{7}$$

として定義され、複素誘電率と同様に、

$$\varepsilon_r^* = \varepsilon_r' - i\varepsilon_r'' \tag{8}$$

と表される。ここで、 ε'_r は比誘電率、 ε''_r は比誘電損率であり、それぞれ、

$$\varepsilon_r' = \frac{C}{C_0} = \frac{d}{\varepsilon_0 S} C \tag{9}$$

$$\varepsilon_r'' = \varepsilon_r' \tan \delta \tag{10}$$

となる。ここに、 C_0 は真空コンデンサーの静電容量、S はコンデンサーの面積であり、d はコンデンサー 間の距離である。式 (9)、式 (10) から分かるように、誘電体で満たしたコンデンサーの静電容量 C と、誘 電正接 tan δ の測定により、複素比誘電率 ε_r^* が得られる。

2.4 誘電緩和

第2.1.3 節で述べたように、極性分子においては双極子分極が生じる。双極子分極では、誘電体内の双極 子モーメントが、周りの双極子モーメントから、その運動を妨げられながら徐々に電場方向へと配向し、誘 電体全体として電場方向の双極子モーメントが誘起される。このため、極性分子に電場をかけると、徐々に 分極が形成され、電場をかけるのをやめると、徐々に分極が消滅する。誘電体の示すこのような振る舞いを 誘電緩和と言う。誘電緩和に基づいて、極性分子の複素比誘電率の周波数依存性を記述するモデルとして、 デバイの式がある。デバイの式は、

$$\varepsilon_r^* = \varepsilon_{r\infty} + \frac{\varepsilon_{r0} - \varepsilon_{r\infty}}{1 + i\omega\tau} = \varepsilon_{r\infty} + \frac{\Delta\varepsilon_r}{1 + i\omega\tau}$$
(11)

により与えられる^[1]。ここで、 $\varepsilon_{r\infty}$ は高周波側の比誘電率、 ε_{r0} は低周波側の比誘電率、 $\Delta \varepsilon_r = \varepsilon_{r0} - \varepsilon_{r\infty}$ は緩和強度であり、 τ は緩和時間²である。また、緩和強度 $\Delta \varepsilon_r$ を双極子モーメントの大きさとし、緩和時間 τ を双極子モーメントの配向に要する時間とする。式 (11)を実部と虚部に分離すると、

$$\varepsilon_r^* = \left(\varepsilon_{r\infty} + \frac{\Delta\varepsilon_r}{1 + \omega^2 \tau^2}\right) - i\left(\frac{\Delta\varepsilon_r \omega\tau}{1 + \omega^2 \tau^2}\right) \tag{12}$$

となる。式 (8) より、式 (12) の実部は比誘電率 ε'_r 、虚部は比誘電損率 ε''_r に対応することが分かる。図 7 に、 式 (12) において、 $\varepsilon_{r0} = 2$ 、 $\varepsilon_{r\infty} = 1$ 、 $\Delta \varepsilon_r = 1$ とし、 $\tau = 5.0 \times 10^{-4}$ [s] としたときの、比誘電率 ε'_r 、比誘 電損率 ε''_r の周波数依存性を示す。ここで、横軸は周波数の常用対数 $\log_{10} f$ [Hz] であり、縦軸は (a) 比誘電 率 ε'_r であり、(b) 比誘電損率 ε''_r である。

図 7: 比誘電率 ε'_r 、比誘電損率 ε''_r の周波数依存性。式 (12) において、 $\varepsilon_{r0} = 2$ 、 $\varepsilon_{r\infty} = 1$ 、 $\Delta \varepsilon_r = 1$ とし、 $\tau = 5.0 \times 10^{-4}$ [s] とした。横軸は周波数の常用対数 $\log_{10} f$ [Hz] であり、縦軸は (a) 比誘電率 ε'_r であり、(b) 比誘電損率 ε''_r である。

誘電緩和による複素比誘電率 ε_r^* は、図 7 のような緩和過程を示す。図 7 から、比誘電率 ε_r' は、低周波側 で一定値 ε_{r0} をとり、 $\log_{10} f = 2.5$ 前後で急激に減少した後、再び高周波側で一定値 $\varepsilon_{r\infty}$ をとることが分 かる。また、比誘電損率 ε_r'' は、 $\log_{10} f < 2.5$ で f の値と共に増加し、 $\log_{10} f = 2.5$ で最大値をとった後、 $\log_{10} f > 2.5$ で f の値と共に減少することが分かる。ピークにおける周波数を f_m とすると、緩和時間 τ と の間に、

$$\tau = \frac{1}{2\pi f_m} \tag{13}$$

という関係が成り立つ。図7では、

$$=\frac{1}{2\pi \times 10^{2.5}} \sim 5.0 \times 10^{-4} [s] \tag{14}$$

である。

au

 $^{^{2}}$ 梅原先生へ: [1] では緩和時間を τ としていますが、[2] では緩和時間を $\frac{\varepsilon_{r\infty}+2}{\varepsilon_{r0}+2}\tau$ としています。緩和時間の定義の仕方には色々 あるのでしょうか? ご教示頂けると助かります。

極性分子において、異なる双極子モーメントによる複数の双極子分極を考えるとき、複素比誘電率 ε_r^* の 周波数依存性は、式 (11) で定義されるデバイの式を拡張して、

$$\varepsilon_r^* = \varepsilon_{r\infty} + \sum_k \frac{\Delta \varepsilon_{rk}}{\left\{ 1 + (i\omega\tau_k)^{\beta_k} \right\}^{\alpha_k}} \tag{15}$$

と表される。ここで、kは異なる双極子モーメントによる双極子分極の数である。また、 α_k 、 β_k は、緩和 過程の種類に関するパラメータであり、

- $\alpha_k = \beta_k = 1$ のとき … Debye 型緩和
- $0 < \alpha_k \le 1$ 、 $\beta_k = 1$ のとき … Cole–Davidson 型緩和
- $\alpha_k = 1$ 、 $0 < \beta_k \le 1$ のとき …Cole–Cole 型緩和
- $0 < \alpha_k$ 、 $\beta_k \le 1$ のとき · · · Havriliak–Negami 型緩和

などに分類される [1]。本実験では、式 (15) を用いて、複素比誘電率 ε_r^* の周波数依存性に関する解析を行った。

3 装置

図 8: 装置構成図。装置は、(a) 誘電体測定電極(Agilent 16451B) (b)BaTiO₃ の複素誘電率の温度依存性 測定装置、(c) ピンセット型誘電体測定電極(NF 2326A) (d)LCR メータ(NF ZM2371) 及び、(e) デー 夕処理用 PC から成る。

図8に、装置構成図を示す。図8に示したように、装置は、(a)誘電体測定電極(Agilent 16451B)、 (b)BaTiO₃の複素誘電率の温度依存性測定装置、(c)ピンセット型誘電体測定電極(NF 2326A) (d)LCR メータ(NF ZM2371) 及び、(e)データ処理用 PC から成る。LCR メータから、誘電体測定電極、BaTiO₃ の複素誘電率の温度依存性測定装置、ピンセット型誘電体測定電極に交流電流を加え、各コンデンサー(測 定電極、装置)にかかる電圧とそこに流れる電流を測定することで、各コンデンサーの静電容量 Cと誘電 正接 tan δ を得る。測定データは、データ処理用 PC へと送られる。温度依存性測定装置(図8(b))におい て、BaTiO₃はコンデンサーに挟まれ、コンデンサーにはリード線と熱電対(クロメルーアルメル線)が接 続されている。リード線はLCR メータに繋がり、コンデンサーの静電容量 Cと誘電正接 tan δ を測定でき る。熱電対はヒーターの温度コントローラに繋がり、BaTiO₃の温度を確認できる。BaTiO₃の周囲には、 らせん状にヒーター線が巻かれ、ヒーター線はヒーターの温度コントローラと繋がっている。温度コント ローラの設定温度を上げることで、ヒーター線が発熱し、BaTiO₃が加熱される。

4 実験手順

本実験では、

- 1. アクリル、塩化ビニル、テフロンの複素誘電率の測定
- 2. アクリル、塩化ビニル、テフロンの複素誘電率の周波数依存性の測定
- 3. BaTiO₃の複素誘電率の温度依存性の測定
- 4. ガラスの複素誘電率の周波数依存性の測定
- の4つを行った。以下、それらの実験手順について述べる。
- 4.1 アクリル、塩化ビニル、テフロンの複素誘電率の測定

以下の手順で、アクリル、塩化ビニル、テフロンの複素誘電率(複素比誘電率 ε_r^*)を測定した。

- LCR メータ(図 8(d))、データ処理用 PC(図 8(e))の電源を入れ、LCR メータに誘電体測定電極 (図 8(a))を接続した。
- 2. 誘電体測定電極にアクリルを挟んだ。このとき、電極とアクリルの間に隙間が生じないよう注意した。
- 3. LCR メータにおいて、交流電流の周波数を 1[kHz]、平均化の回数を 16 回に設定した。
- 4. データ処理用 PC のアプリケーションソフト ZM237x を起動した。
- 5. ZM237x において、表示条件、測定条件、スポット測定を次のように設定した。
 - 表示条件

主パラメタ ラベル C / 主パラメタ 種類 C / 主パラメタ 偏差表示 ABS / 主パラメタ 偏差基準 値 0.00E+00 / 副パラメタ ラベル D / 副パラメタ 種類 D / 副パラメタ 偏差表示 ABS / 副パ ラメタ 偏差基準値 0.00E+00

- 測定条件
 周波数 周波数 1.00E+03 / 信号レベル ALC OFF / 信号レベル 測定電圧レベル 1 / 信号レベル
 測定電流レベル 1.00E-03 / レンジ 自動選択 OFF / レンジ 測定レンジ 1M / トリガ トリガ
 源 Internal / トリガ 遅延時間 0.008 / 測定速度 測定速度 MED / DC バイアス 有効無効 OFF
 / DC バイアス 設定値 0 / 平均化 有効無効 ON / 平均化 回数 16
- スポット測定 繰り返し回数 10 / インターバル 1.00E+00 / 備考 測定点数 100
- 6. ZM237x において、開始ボタンをクリックし、LCR メータを用いて、アクリルを挟んだ誘電体測定電 極の静電容量 C と誘電正接 $\tan \delta$ を測定した。
- 7. 誘電体測定電極のアクリルを挟む位置を変え、同様の測定を4回行った。
- 8. 塩化ビニル、テフロンについても、同様に測定した。
- 9. 得られた静電容量 C と誘電正接 $\tan \delta$ から、各試料の複素比誘電率 ε_r^* を求めた。

4.2 アクリル、塩化ビニル、テフロンの複素誘電率の周波数依存性の測定

以下の手順で、アクリル、塩化ビニル、テフロンの複素誘電率(複素比誘電率 ε_r^*)を周波数 f[Hz] ごと に測定した。

- LCR メータ(図8(d))、データ処理用 PC(図8(e))の電源を入れ、LCR メータに誘電体測定電極 (図8(a))を接続した。
- 2. 誘電体測定電極にアクリルを挟んだ。このとき、電極とアクリルの間に隙間が生じないよう注意した。
- 3. LCR メータにおいて、平均化の回数を 16 回に設定した。
- 4. データ処理用 PC のアプリケーションソフト ZM237x を起動した。
- 5. ZM237x において、表示条件、測定条件、スイープ測定を次のように設定した。
 - 表示条件

主パラメタ ラベル C / 主パラメタ 種類 C / 主パラメタ 偏差表示 ABS / 主パラメタ 偏差基準 値 0.00E+00 / 副パラメタ ラベル D / 副パラメタ 種類 D / 副パラメタ 偏差表示 ABS / 副パ ラメタ 偏差基準値 0.00E+00

• 測定条件

周波数 周波数 1.00E+03 / 信号レベル ALC OFF / 信号レベル 測定電圧レベル 1 / 信号レベ ル 測定電流レベル 1.00E-03 / レンジ 自動選択 OFF / レンジ 測定レンジ 10k / トリガ ト リガ源 Internal / トリガ 遅延時間 0.008 / 測定速度 測定速度 MED / DC バイアス 有効無効 OFF / DC バイアス 設定値 0 / 平均化 有効無効 ON / 平均化 回数 16

- 6. ZM237x において、開始ボタンをクリックし、LCR メータを用いて、アクリルを挟んだ誘電体測定電 極の静電容量 C と誘電正接 tan δ を 1[Hz] から 100[kHz] まで測定した。
- 7. 誘電体測定電極のアクリルを挟む位置を変え、同様の測定を3回行った。
- 8. 塩化ビニル、テフロンについても、同様に測定した。
- 9. 得られた静電容量 C と誘電正接 $\tan \delta$ から、周波数 f[Hz] ごとの各試料の複素比誘電率 ε_r^* を求めた。
- 4.3 BaTiO₃の複素誘電率の温度依存性の測定

以下の手順で、 $BaTiO_3$ の複素誘電率(複素比誘電率 ε_r^*)を温度T[]ごとに測定した。

- LCR メータ(図 8(d)) データ処理用 PC (図 8(e))の電源を入れ、LCR メータに BaTiO₃の複素誘 電率の温度依存性測定装置(図 8(b))のリード線を接続した。
- 2. LCR メータにおいて、平均化の回数を 16 回に設定した。
- 3. データ処理用 PC のアプリケーションソフト ZM237x を起動した。
- 4. ZM237x において、表示条件、測定条件、スポット測定を次のように設定した。

スイープ測定
 タイプ ログ / 開始周波数 1.00E+00 / 終了周波数 1.00E+05 / 測定点数 100

• 表示条件

主パラメタ ラベル C / 主パラメタ 種類 C / 主パラメタ 偏差表示 ABS / 主パラメタ 偏差基準 値 0.00E+00 / 副パラメタ ラベル D / 副パラメタ 種類 D / 副パラメタ 偏差表示 ABS / 副パ ラメタ 偏差基準値 0.00E+00

• 測定条件

周波数 周波数 1.00E+03 / 信号レベル ALC OFF / 信号レベル 測定電圧レベル 1 / 信号レベ ル 測定電流レベル 1.00E-03 / レンジ 自動選択 ON / レンジ 測定レンジ 100k / トリガ ト リガ源 Internal / トリガ 遅延時間 0.008 / 測定速度 測定速度 MED / DC バイアス 有効無効 OFF / DC バイアス 設定値 0 / 平均化 有効無効 ON / 平均化 回数 16

- スポット測定 繰り返し回数 10 / インターバル 1.00E+00 / 備考 測定点数 100
- 5. ZM237x において、開始ボタンをクリックし、LCR メータを用いて、BaTiO₃ を挟んだコンデンサーの静電容量 C と誘電正接 tan δ を測定した。
- 6. ヒーターの温度コントローラを用いて、BaTiO3 の温度を約 10[]上げた。このとき、温度を急激に 上げないように注意した。
- 7. LCR メータをモニターとして用い、静電容量 C と誘電正接 $\tan \delta$ の値を確認しながら、その変化が緩やかになったところで、ZM237x において、開始ボタンをクリックし、静電容量 C と誘電正接 $\tan \delta$ を測定 (データ処理用 PC に取り込み)した。
- 8. ヒーターの温度コントローラを用いて、BaTiO₃の温度を、100[]までは約 10[]間隔、110[]までは約 5[]間隔、130[]までは 1[]間隔、140[]までは約 3[]間隔で上げながら、同様の測定を繰り返した。
- 9. 得られた静電容量 C と誘電正接 $\tan \delta$ から、温度 T[] ごとの $BaTiO_3$ の複素比誘電率 ε_r^* を求めた。

4.4 ガラスの複素誘電率の周波数依存性の測定

以下の手順で、ガラスの複素誘電率(複素比誘電率 ε_r^*)を周波数 f[Hz] ごとに測定した。

- LCR メータ(図8(d)) データ処理用 PC(図8(e))の電源を入れ、LCR メータにピンセット型誘電 体測定電極(図8(c))を接続した。
- 2. ピンセット型誘電体測定電極にガラスのシャーレを挟んだ。このとき、電極とガラスの間に隙間が生 じないよう注意した。
- 3. LCR メータにおいて、平均化の回数を 16 回に設定した。
- 4. データ処理用 PC のアプリケーションソフト ZM237x を起動した。
- 5. ZM237x において、表示条件、測定条件、スイープ測定を次のように設定した。
 - 表示条件

主パラメタ ラベル C / 主パラメタ 種類 C / 主パラメタ 偏差表示 ABS / 主パラメタ 偏差基準 値 0.00E+00 / 副パラメタ ラベル D / 副パラメタ 種類 D / 副パラメタ 偏差表示 ABS / 副パ ラメタ 偏差基準値 0.00E+00 • 測定条件

周波数 周波数 1.00E+05 / 信号レベル ALC OFF / 信号レベル 測定電圧レベル 1 / 信号レベ ル 測定電流レベル 1.00E-03 / レンジ 自動選択 ON / レンジ 測定レンジ 100k / トリガ トリ ガ源 Bus / トリガ 遅延時間 0.008 / 測定速度 測定速度 MED / DC バイアス 有効無効 OFF / DC バイアス 設定値 0 / 平均化 有効無効 ON / 平均化 回数 16

- スイープ測定
 タイプログ/開始周波数 1.00E+00 / 終了周波数 1.00E+05 / 測定点数 100
- 6. ZM237x において、開始ボタンをクリックし、LCR メータを用いて、ガラスを挟んだピンセット型誘 電体測定電極の静電容量 C と誘電正接 tan δ を 1[Hz] から 100[kHz] まで測定した。
- 7. 同様の測定を2回行った。
- 8. 得られた静電容量 C と誘電正接 $\tan \delta$ から、周波数 f[Hz] ごとのガラスの複素比誘電率 ε_r^* を求めた。

5 結果

5.1 アクリル、塩化ビニル、テフロンの複素誘電率の測定

アクリル、塩化ビニル、テフロンの静電容量 C と誘電正接 $\tan \delta$ の測定は、それぞれ、5回行った。1回 の測定につき、10個の測定値が得られたので、10個の測定値を平均し、各回の測定結果とした。

5.1.1 アクリル

表 1:5回の測定におけるアクリルの静電容量 C[F] と誘電正接 $\tan \delta$ の測定結果。

測定回数	1回目	2回目	3回目	4 回目	5回目
静電容量 C[F]	16.34×10^{-12}	16.32×10^{-12}	16.41×10^{-12}	16.33×10^{-12}	16.24×10^{-12}
誘電正接 $ an \delta$	4.658×10^{-2}	5.030×10^{-2}	4.684×10^{-2}	4.586×10^{-2}	4.568×10^{-2}

表1に、5回の測定におけるアクリルの静電容量 C[F] と誘電正接 $\tan \delta$ の測定結果を示す。表1から、静 電容量 C[F] と誘電正接 $\tan \delta$ の平均値を求めると、

$$\langle C \rangle = 16.33 \times 10^{-12} [F]$$
 (16)

$$\langle \tan \delta \rangle = 4.705 \times 10^{-2} \tag{17}$$

となる。また、真空コンデンサーの静電容量 $C_0[F]$ は、コンデンサーの半径 $r = 19 \times 10^{-3}[m]$ 、アクリル の厚さ $d = 2.146 \times 10^{-3}[m]$ より、

$$C_0 = \varepsilon_0 \frac{\pi r^2}{d} = 4.679 \times 10^{-12} [F] \tag{18}$$

となる。式 (16)、式 (18) より、比誘電率 ε'_r は、

$$\varepsilon_r' = \frac{\langle C \rangle}{C_0} = 3.490 \tag{19}$$

となる。アクリルの比誘電率は 2.7 ~ 4.5^[5] であるので、正しい数値を得られているのではないかと思われる。また、式 (17)、式 (19) より、比誘電損率 ε''_r は、

$$\varepsilon_r'' = \langle \tan \delta \rangle \varepsilon_r' = 0.1642$$

となる。

5.1.2 塩化ビニル

表 2:5回の測定における塩化ビニルの静電容量 C[F] と誘電正接 $\tan \delta$ の測定結果。

測定回数	1回目	2 回目	3回目	4 回目	5回目
静電容量 C[F]	62.84×10^{-12}	61.22×10^{-12}	62.23×10^{-12}	61.37×10^{-12}	62.59×10^{-12}
誘電正接 $ an \delta$	3.982×10^{-2}	3.899×10^{-2}	3.934×10^{-2}	3.883×10^{-2}	3.948×10^{-2}

表 2 に、5 回の測定における塩化ビニルの静電容量 C[F] と誘電正接 $\tan \delta$ の測定結果を示す。表 2 から、 静電容量 C[F] と誘電正接 $\tan \delta$ の平均値を求めると、

$$\langle C \rangle = 62.05 \times 10^{-12} [F]$$
 (21)

$$\langle \tan \delta \rangle = 3.929 \times 10^{-2} \tag{22}$$

となる。また、真空コンデンサーの静電容量 $C_0[F]$ は、コンデンサーの半径 $r = 19 \times 10^{-3}[m]$ 、塩化ビニ ルの厚さ $d = 5.08 \times 10^{-4}[m]$ より、

$$C_0 = \varepsilon_0 \frac{\pi r^2}{d} = 19.77 \times 10^{-12} [F]$$
(23)

となる。式 (21)、式 (23) より、比誘電率 ε'_r は、

$$\varepsilon_r' = \frac{\langle C \rangle}{C_0} = 3.139 \tag{24}$$

となる。塩化ビニルの比誘電率は 2.8 ~ 8.0^[5] であるので、正しい数値を得られているのではないかと思われる。また、式 (22)、式 (24) より、比誘電損率 ε''_r は、

$$\varepsilon_r'' = \langle \tan \delta \rangle \varepsilon_r' = 0.1233 \tag{25}$$

となる。

5.1.3 テフロン

表 3 に、5 回の測定におけるテフロンの静電容量 C[F] と誘電正接 $\tan \delta$ の測定結果を示す。表 3 から、静 電容量 C[F] と誘電正接 $\tan \delta$ の平均値を求めると、

$$\langle C \rangle = 19.65 \times 10^{-12} [F]$$
 (26)

$$\langle \tan \delta \rangle = 5.616 \times 10^{-4} \tag{27}$$

(20)

表 3:5回の測定におけるテフロンの静電容量 C[F] と誘電正接 $\tan \delta$ の測定結果。

測定回数	1回目	2回目	3回目	4 回目	5回目
静電容量 C[F]	19.16×10^{-12}	19.82×10^{-12}	20.29×10^{-12}	19.88×10^{-12}	19.12×10^{-12}
誘電正接 $ an \delta$	5.475×10^{-4}	5.590×10^{-4}	5.583×10^{-4}	5.730×10^{-4}	5.704×10^{-4}

となる。また、真空コンデンサーの静電容量 C_0 [F] は、コンデンサーの半径 $r = 19 \times 10^{-3}$ [m]、テフロン の厚さ $d = 1.029 \times 10^{-3}$ [m] より、

$$C_0 = \varepsilon_0 \frac{\pi r^2}{d} = 9.758 \times 10^{-12} [F]$$
⁽²⁸⁾

となる。式 (26)、式 (28) より、比誘電率 ε'_r は、

$$\varepsilon_r' = \frac{\langle C \rangle}{C_0} = 2.014 \tag{29}$$

となる。テフロンの比誘電率は 2.0^[5] であるので、正しい数値を得られているのではないかと思われる。また、式 (27)、式 (29) より、比誘電損率 ε_r'' は、

$$\varepsilon_r'' = \langle \tan \delta \rangle \varepsilon_r' = 1.131 \times 10^{-3} \tag{30}$$

となる。テフロンの比誘電損率が、アクリル・塩化ビニルの比誘電損率(式(20)、式(25))よりも非常に 小さいことから、テフロンの分極は、それらに比べかなり速いことが分かる。このことから、テフロンとア クリル・塩化ビニルでは、分極の種類が異なるのではないかと思われる。

5.2 アクリル、塩化ビニル、テフロンの複素誘電率の周波数依存性の測定

周波数ごとのアクリル、塩化ビニル、テフロンの静電容量 C と誘電正接 $\tan \delta$ の測定は、それぞれ、4 回行った。周波数ごとに得られた 4 個の測定値を平均し、各周波数の測定結果とした。

5.2.1 アクリル

表 4 に、周波数 f[Hz] ごとのアクリルの静電容量 C[F] と誘電正接 $\tan \delta$ の測定結果を示す。図 9 に、表 4 の測定結果を用いた、アクリルの複素比誘電率 ε_r^* の周波数依存性を示す。ここで、横軸は周波数の常用対数 $\log_{10} f$ [Hz]、縦軸は (a) 比誘電率 ε_r' 、(b) 比誘電損率の常用対数 $\log_{10} \varepsilon_r''$ であり、黒い点は測定値である。 図 9 の複素比誘電率 ε_r^* を緩和過程に分解する。式 (15) を図 9 に当てはめると、

$$\varepsilon_r^* = \varepsilon_{r\infty} + \sum_{k=1}^2 \frac{\Delta \varepsilon_{rk}}{\left\{1 + (i\omega\tau_k)^{\beta_k}\right\}^{\alpha_k}} = 2.871 + \frac{7.352}{\left\{1 + (i\omega\times10^{-1.161})^1\right\}^{0.7192}} + \frac{1.270}{\left\{1 + (i\omega\times10^{-1.614})^{0.6431}\right\}^{0.2137}}$$
(31)

となり、アクリルの誘電緩和は、2つの緩和過程(低周波側の大きな緩和過程と高周波側の小さな緩和過 程)から成ることが分かる。図 10 に、アクリルの緩和過程の様子を示す。ここで、横軸は周波数の常用対 数 $\log_{10} f$ [Hz]、縦軸は複素比誘電率の常用対数 $\log_{10} \varepsilon_r^*$ であり、青い点は比誘電率 ε_r' の測定値、緑の点は 比誘電損率 ε_r'' の測定値、赤い曲線は式 (31) による $\varepsilon_r', \varepsilon_r''$ を表し、青い曲線は式 (31) の 2 つの緩和過程を 表す。

表 4: 周波数 f[Hz] ごとのアクリルの静電容量 C[F] と誘電正接 $\tan \delta$ の測定結果。

f[Hz]	C[F]	$ an \delta$	f[Hz]	$C[\mathbf{F}]$	$ an \delta$
1.000	59.93×10^{-12}	1.743	1.123	55.12×10^{-12}	1.696
1.262	56.02×10^{-12}	1.490	1.418	50.83×10^{-12}	1.385
1.592	48.10×10^{-12}	1.404	1.789	47.00×10^{-12}	1.238
2.009	43.57×10^{-12}	1.157	2.257	41.21×10^{-12}	1.133
2.535	38.51×10^{-12}	1.081	2.848	37.53×10^{-12}	9.357×10^{-1}
3.199	35.68×10^{-12}	8.655×10^{-1}	3.594	34.35×10^{-12}	9.066×10^{-1}
4.037	32.83×10^{-12}	8.682×10^{-1}	4.535	31.11×10^{-12}	7.537×10^{-1}
5.094	29.03×10^{-12}	7.642×10^{-1}	5.722	28.97×10^{-12}	6.692×10^{-1}
6.428	27.26×10^{-12}	6.514×10^{-1}	7.221	26.53×10^{-12}	5.923×10^{-1}
8.111	25.91×10^{-12}	5.529×10^{-1}	9.112	25.54×10^{-12}	5.172×10^{-1}
1.024×10^{1}	25.12×10^{-12}	4.620×10^{-1}	1.150×10^{1}	24.73×10^{-12}	4.448×10^{-1}
1.292×10^{1}	24.16×10^{-12}	3.754×10^{-1}	1.451×10^{1}	22.99×10^{-12}	3.728×10^{-1}
1.630×10^{1}	22.61×10^{-12}	3.623×10^{-1}	1.831×10^{1}	22.60×10^{-12}	3.203×10^{-1}
2.057×10^{1}	21.99×10^{-12}	2.896×10^{-1}	2.310×10^{1}	21.39×10^{-12}	2.870×10^{-1}
2.595×10^{1}	21.45×10^{-12}	2.603×10^{-1}	2.915×10^{1}	20.77×10^{-12}	2.528×10^{-1}
3.275×10^{1}	20.54×10^{-12}	2.310×10^{-1}	3.678×10^{1}	20.44×10^{-12}	2.071×10^{-1}
4.132×10^{1}	20.09×10^{-12}	2.011×10^{-1}	4.642×10^{1}	19.79×10^{-12}	1.952×10^{-1}
5.214×10^{1}	19.39×10^{-12}	1.831×10^{-1}	5.857×10^{1}	19.55×10^{-12}	1.658×10^{-1}
6.579×10^{1}	19.04×10^{-12}	1.622×10^{-1}	7.391×10^{1}	18.88×10^{-12}	1.476×10^{-1}
8.302×10^{1}	18.73×10^{-12}	1.440×10^{-1}	9.326×10^{1}	18.56×10^{-12}	1.392×10^{-1}
1.048×10^{2}	18.38×10^{-12}	1.276×10^{-1}	1.177×10^{2}	18.28×10^{-12}	1.209×10^{-1}
1.322×10^{2}	18.15×10^{-12}	1.139×10^{-1}	1.485×10^{2}	18.01×10^{-12}	1.066×10^{-1}
1.668×10^{2}	17.85×10^{-12}	1.064×10^{-1}	1.874×10^{2}	17.71×10^{-12}	1.005×10^{-1}
2.105×10^{2}	17.58×10^{-12}	9.524×10^{-2}	2.365×10^{2}	17.44×10^{-12}	8.980×10^{-2}
2.656×10^{2}	17.35×10^{-12}	8.650×10^{-2}	2.984×10^{2}	17.22×10^{-12}	8.425×10^{-2}
3.352×10^{2}	17.16×10^{-12}	7.954×10^{-2}	3.765×10^{2}	17.05×10^{-12}	7.701×10^{-2}
4.229×10^{2}	16.98×10^{-12}	7.366×10^{-2}	4.751×10^{2}	16.88×10^{-12}	7.076×10^{-2}
5.337×10^{2}	16.81×10^{-12}	6.846×10^{-2}	5.995×10^{2}	16.75×10^{-12}	6.674×10^{-2}
6.734×10^{2}	16.68×10^{-12}	6.435×10^{-2}	7.565×10^{2}	16.60×10^{-12}	6.210×10^{-2}
8.498×10^{2}	16.53×10^{-12}	6.024×10^{-2}	9.546×10^{2}	16.46×10^{-12}	5.854×10^{-2}
1.072×10^{3}	16.40×10^{-12}	5.634×10^{-2}	1.205×10^{3}	16.34×10^{-12}	5.465×10^{-2}
1.353×10^{3}	16.29×10^{-12}	5.334×10^{-2}	1.520×10^{3}	16.22×10^{-12}	5.157×10^{-2}
1.707×10^{3}	16.17×10^{-12}	5.026×10^{-2}	1.918×10^{3}	16.11×10^{-12}	4.902×10^{-2}
2.154×10^{3}	16.05×10^{-12}	4.594×10^{-2}	2.420×10^{3}	16.00×10^{-12}	4.506×10^{-2}
2.719×10^{3}	15.95×10^{-12}	4.391×10^{-2}	3.054×10^{3}	15.90×10^{-12}	4.302×10^{-2}
3.431×10^{3}	15.86×10^{-12}	4.154×10^{-2}	3.854×10^{3}	15.81×10^{-12}	4.121×10^{-2}
4.329×10^{3}	15.77×10^{-12}	4.023×10^{-2}	4.863×10^{3}	15.72×10^{-12}	3.916×10^{-2}
5.462×10^{3}	15.68×10^{-12}	3.846×10^{-2}	6.136×10^{3}	15.64×10^{-12}	3.752×10^{-2}
6.893×10^{3}	15.60×10^{-12}	3.684×10^{-2}	7.743×10^{3}	15.56×10^{-12}	3.612×10^{-2}
8.698×10^{3}	15.52×10^{-12}	3.546×10^{-2}	9.770×10^{3}	15.48×10^{-12}	3.490×10^{-2}
1.098×10^{4}	15.44×10^{-12}	3.432×10^{-2}	1.233×10^{4}	15.41×10^{-12}	3.365×10^{-2}
1.385×10^{4}	15.37×10^{-12}	3.304×10^{-2}	1.556×10^{4}	15.33×10^{-12}	3.253×10^{-2}
1.748×10^{4}	15.30×10^{-12}	3.205×10^{-2}	1.963×10^{4}	15.27×10^{-12}	3.160×10^{-2}
2.205×10^{4}	15.23×10^{-12}	3.100×10^{-2}	2.477×10^{4}	15.21×10^{-12}	3.066×10^{-2}
2.783×10^{4}	15.18×10^{-12}	3.031×10^{-2}	3.120×10^{4}	15.14×10^{-12}	2.994×10^{-2}
3.511×10^{4}	15.11×10^{-12}	2.904×10^{-2}	3.944×10^{4}	15.08×10^{-12}	$2.92(\times 10^{-2})$
4.431×10^{-10}	10.05×10^{-12}	2.897×10^{-2}	$4.977 \times 10^{-10^{4}}$	13.02×10^{-12}	$2.8(4 \times 10^{-2})$
0.091×10^{-7}	14.99×10^{-12}	2.001×10^{-2}	0.200×10^{-104}	14.97×10^{-12}	2.004×10^{-2}
8.902×10^{4}	14.94×10 14.89×10^{-12}	2.010×10 2 798 $\times 10^{-2}$	1.923×10^{-5}	14.91×10 14.87×10^{-12}	2.003×10 2 797 $\times 10^{-2}$
8.902×10^4	14.89×10^{-12}	2.798×10^{-2}	1.000×10^{5}	14.87×10^{-12}	2.797×10^{-2}

図 9: アクリルの複素比誘電率 ε_r^* の周波数依存性。横軸は周波数の常用対数 $\log_{10} f$ [Hz] であり、縦軸は (a) 比誘電率 ε_r' であり、(b) 比誘電損率の常用対数 $\log_{10} \varepsilon_r''$ である。黒い点は測定値を表す。

図 10: アクリルの緩和過程。横軸は周波数の常用対数 $\log_{10} f$ [Hz] であり、縦軸は複素比誘電率の常用対数 $\log_{10} \varepsilon_r^*$ である。青い点は比誘電率 ε_r' の測定値、緑の点は比誘電損率 ε_r'' の測定値、赤い曲線は式 (31) による ε_r' 、 ε_r'' を表し、青い曲線は式 (31) の 2 つの緩和過程を表す。

5.2.2 塩化ビニル

表 5 に、周波数 f[Hz] ごとの塩化ビニルの静電容量 C[F] と誘電正接 tan δ の測定結果を示す。図 11 に、 表 5 の測定結果を用いた、塩化ビニルの複素比誘電率 ε_r^* の周波数依存性を示す。ここで、横軸は周波数の 常用対数 $\log_{10} f$ [Hz]、縦軸は (a) 比誘電率 ε_r' 、(b) 比誘電損率の常用対数 $\log_{10} \varepsilon_r''$ であり、黒い点は測定値 を表す。

図 11 の複素比誘電率 ε_r^* を緩和過程に分解する。式 (15) を図 11 に当てはめると、

$$\varepsilon_r^* = \varepsilon_{r\infty} + \sum_{k=1}^{2} \frac{\Delta \varepsilon_{rk}}{\left\{1 + (i\omega\tau_k)^{\beta_k}\right\}^{\alpha_k}} = 2.735 + \frac{2.010}{\left\{1 + (i\omega \times 10^{-1.158})^{0.9999}\right\}^{0.5267}} + \frac{0.6000}{\left\{1 + (i\omega \times 10^{-4.054})^{0.4389}\right\}^{0.6098}}$$
(32)

となり、塩化ビニルの誘電緩和は、アクリルと同様に、2つの緩和過程(低周波側の大きな緩和過程と高周 波側の小さな緩和過程)から成ることが分かる。図12に、塩化ビニルの緩和過程の様子を示す。ここで、 横軸は周波数の常用対数 $\log_{10} f$ [Hz]、縦軸は複素比誘電率の常用対数 $\log_{10} \varepsilon_r^*$ であり、青い点は比誘電率 ε_r' の測定値、緑の点は比誘電損率 ε_r'' の測定値、赤い曲線は式(32)による $\varepsilon_r', \varepsilon_r''$ を表し、青い曲線は式(32) の2つの緩和過程を表す。

5.2.3 テフロン

表 6 に、周波数 f[Hz] ごとのテフロンの静電容量 C[F] と誘電正接 tan δ の測定結果を示す。図 13 に、表 6 の測定結果を用いた、テフロンの複素比誘電率 ε_r^* の周波数依存性を示す。ここで、横軸は周波数の常用対数 $\log_{10} f$ [Hz]、縦軸は (a) 比誘電率 ε_r' 、(b) 比誘電損率の常用対数 $\log_{10} \varepsilon_r''$ であり、黒い点は測定値を表す。 図 13 の複素比誘電率 ε_r^* を緩和過程に分解する。式 (15) を図 13 に当てはめると、

$$\varepsilon_r^* = \varepsilon_{r\infty} + \sum_{k=1}^{1} \frac{\Delta \varepsilon_{rk}}{\left\{ 1 + (i\omega\tau_k)^{\beta_k} \right\}^{\alpha_k}} = 2.061 + \frac{2.639}{\left\{ 1 + (i\omega\times10^{-1.374})^1 \right\}^1}$$
(33)

となり、テフロンの誘電緩和は、アクリルや塩化ビニルとは異なり、低周波側の大きな緩和過程のみから成る ことが分かる。図 14 に、テフロンの緩和過程の様子を示す。ここで、横軸は周波数の常用対数 $\log_{10} f$ [Hz]、 縦軸は複素比誘電率の常用対数 $\log_{10} \varepsilon_r^*$ であり、青い点は比誘電率 ε_r' の測定値、緑の点は比誘電損率 ε_r'' の 測定値、赤い曲線は式 (33) による $\varepsilon_r', \varepsilon_r''$ を表し、青い曲線は式 (33) の緩和過程を表す。

5.3 BaTiO3の複素誘電率の温度依存性の測定

温度ごとの BaTiO₃ の静電容量 C と誘電正接 tan δ の測定は 10 回行った。温度ごとに得られた 10 個の 測定値を平均し、各温度の測定結果とした。表 7 に、温度 T[] ごとの BaTiO₃ の静電容量 C[F] と誘電正 接 tan δ の測定結果を示す。図 15 に、表 7 の測定結果を用いた、BaTiO₃ の複素比誘電率 ε_r^* の温度依存性 を示す。ここで、横軸は温度 T[]、縦軸は (a) 比誘電率 ε_r' 、(b) 比誘電損率 ε_r'' であり、黒い点は測定値を 表す。図 15 から、比誘電率 ε_r' と比誘電損率 ε_r'' は、共に、T < 110[] では緩やかに増加し、T = 110[] 付近から急激な増加を始め、T = 120[] 付近で極大となり、T > 120[] では減少することが分かる。こ のとき、どの温度 T においても、比誘電率 ε_r' と比誘電損率 ε_r'' の振る舞いがほとんど変わらないことから、

 $\varepsilon_r'' \propto \varepsilon_r' \quad (T$ によらず)

(34)

表 5: 周波数 f[Hz] ごとの塩化ビニルの静電容量 C[F] と誘電正接 $\tan \delta$ の測定結果。

f[Hz]	C[F]	$ an \delta$	f[Hz]	C[F]	$ an \delta$
1.000	119.0×10^{-12}	8.545×10^{-1}	1.123	115.3×10^{-12}	8.183×10^{-1}
1.262	112.4×10^{-12}	7.431×10^{-1}	1.418	108.1×10^{-12}	7.220×10^{-1}
1.592	103.4×10^{-12}	7.090×10^{-1}	1.789	102.1×10^{-12}	5.777×10^{-1}
2.009	102.6×10^{-12}	5.175×10^{-1}	2.257	98.38×10^{-12}	5.132×10^{-1}
2.535	95.71×10^{-12}	4.674×10^{-1}	2.848	91.70×10^{-12}	4.454×10^{-1}
3.199	92.10×10^{-12}	3.780×10^{-1}	3.594	88.71×10^{-12}	3.581×10^{-1}
4.037	87.29×10^{-12}	3.190×10^{-1}	4.535	85.98×10^{-12}	3.101×10^{-1}
5.094	84.77×10^{-12}	2.744×10^{-1}	5.722	83.08×10^{-12}	2.608×10^{-1}
6.428	82.09×10^{-12}	2.437×10^{-1}	7.221	82.23×10^{-12}	2.278×10^{-1}
8.111	80.79×10^{-12}	2.038×10^{-1}	9.112	79.19×10^{-12}	1.990×10^{-1}
1.024×10^{1}	78.13×10^{-12}	1.675×10^{-1}	1.150×10^{1}	77.92×10^{-12}	1.730×10^{-1}
1.292×10^{1}	77.32×10^{-12}	1.590×10^{-1}	1.451×10^{1}	76.28×10^{-12}	1.468×10^{-1}
1.630×10^{1}	76.10×10^{-12}	1.358×10^{-1}	1.831×10^{1}	75.51×10^{-12}	1.251×10^{-1}
2.057×10^{1}	74.13×10^{-12}	1.229×10^{-1}	2.310×10^{1}	74.08×10^{-12}	1.173×10^{-1}
2.595×10^{1}	73.39×10^{-12}	1.071×10^{-1}	2.915×10^{1}	72.97×10^{-12}	1.064×10^{-1}
3.275×10^{1}	72.50×10^{-12}	9.814×10^{-2}	3.678×10^{1}	71.98×10^{-12}	9.443×10^{-2}
4.132×10^{1}	71.41×10^{-12}	9.103×10^{-2}	4.642×10^{1}	70.92×10^{-12}	8.599×10^{-2}
5.214×10^{1}	70.57×10^{-12}	8.245×10^{-2}	5.857×10^{1}	70.14×10^{-12}	7.948×10^{-2}
6.579×10^{1}	69.90×10^{-12}	7.332×10^{-2}	7.391×10^{1}	69.39×10^{-12}	7.271×10^{-2}
8.302×10^{1}	68.89×10^{-12}	7.082×10^{-2}	9.326×10^{1}	68.61×10^{-12}	6.758×10^{-2}
1.048×10^{2}	68.25×10^{-12}	6.740×10^{-2}	1.177×10^{2}	67.97×10^{-12}	6.393×10^{-2}
1.322×10^{2}	67.65×10^{-12}	6.156×10^{-2}	1.485×10^{2}	67.42×10^{-12}	6.067×10^{-2}
1.668×10^{2}	67.17×10^{-12}	5.976×10^{-2}	1.874×10^{2}	66.88×10^{-12}	5.819×10^{-2}
2.105×10^{2}	66.59×10^{-12}	5.649×10^{-2}	2.365×10^{2}	66.36×10^{-12}	5.501×10^{-2}
2.656×10^2	66.09×10^{-12}	5.327×10^{-2}	2.984×10^{2}	65.88×10^{-12}	5.288×10^{-2}
3.352×10^{2}	65.64×10^{-12}	5.162×10^{-2}	3.765×10^2	65.40×10^{-12}	5.030×10^{-2}
4.229×10^{2}	65.14×10^{-12}	4.952×10^{-2}	4.751×10^{2}	64.92×10^{-12}	4.828×10^{-2}
5.337×10^{2}	64.72×10^{-12}	4.762×10^{-2}	5.995×10^{2}	64.51×10^{-12}	4.675×10^{-2}
6.734×10^{2}	64.30×10^{-12}	4.591×10^{-2}	7.565×10^{2}	64.07×10^{-12}	4.489×10^{-2}
8.498×10^{2}	63.88×10^{-12}	4.441×10^{-2}	9.546×10^{2}	63.67×10^{-12}	4.357×10^{-2}
1.072×10^{3}	63.47×10^{-12}	4.278×10^{-2}	1.205×10^{3}	63.27×10^{-12}	4.208×10^{-2}
1.353×10^{3}	63.08×10^{-12}	4.159×10^{-2}	1.520×10^{3}	62.89×10^{-12}	4.087×10^{-2}
1.707×10^{3}	62.71×10^{-12}	4.019×10^{-2}	1.918×10^{3}	62.52×10^{-12}	3.967×10^{-2}
2.154×10^{3}	62.34×10^{-12}	3.878×10^{-2}	2.420×10^{3}	62.16×10^{-12}	3.812×10^{-2}
2.719×10^{3}	61.99×10^{-12}	3.777×10^{-2}	3.054×10^{3}	61.82×10^{-12}	3.728×10^{-2}
3.431×10^{3}	61.66×10^{-12}	3.685×10^{-2}	3.854×10^{3}	61.50×10^{-12}	3.648×10^{-2}
4.329×10^{3}	61.34×10^{-12}	3.606×10^{-2}	4.863×10^{3}	61.18×10^{-12}	3.567×10^{-2}
5.462×10^{3}	61.04×10^{-12}	3.528×10^{-2}	6.136×10^{3}	60.89×10^{-12}	3.498×10^{-2}
6.893×10^{3}	60.74×10^{-12}	3.463×10^{-2}	7.743×10^{3}	60.59×10^{-12}	3.429×10^{-2}
8.698×10^{3}	60.44×10^{-12}	3.399×10^{-2}	9.770×10^{3}	60.29×10^{-12}	3.373×10^{-2}
1.098×10^{4}	60.15×10^{-12}	3.349×10^{-2}	1.233×10^{4}	60.00×10^{-12}	3.323×10^{-2}
1.385×10^{4}	59.86×10^{-12}	3.302×10^{-2}	1.556×10^{4}	59.72×10^{-12}	3.279×10^{-2}
1.748×10^{4}	59.58×10^{-12}	3.257×10^{-2}	1.963×10^{4}	59.44×10^{-12}	3.237×10^{-2}
2.205×10^{4}	59.29×10^{-12}	3.224×10^{-2}	2.477×10^{4}	59.16×10^{-12}	3.205×10^{-2}
2.783×10^{4}	59.03×10^{-12}	3.190×10^{-2}	3.126×10^4	58.89×10^{-12}	3.176×10^{-2}
3.511×10^{4}	58.76×10^{-12}	3.164×10^{-2}	3.944×10^4	58.63×10^{-12}	3.152×10^{-2}
4.431×10^{4}	58.50×10^{-12}	3.135×10^{-2}	4.977×10^{4}	58.37×10^{-12}	3.130×10^{-2}
5.591×10^{4}	58.25×10^{-12}	3.123×10^{-2}	0.280×10^{4}	58.12×10^{-12}	3.118×10^{-2}
$(.055 \times 10^{4})$	58.00×10^{-12}	3.115×10^{-2}	$(.925 \times 10^{4})$	57.89×10^{-12}	3.112×10^{-2}
6.902×10 ⁴	01.11×10	3.113×10 -	1.000×10°	01.00×10	3.123×10 -

図 11: 塩化ビニルの複素比誘電率 ε_r^* の周波数依存性。横軸は周波数の常用対数 $\log_{10} f$ [Hz] であり、縦軸は (a) 比誘電率 ε_r' であり、(b) 比誘電損率の常用対数 $\log_{10} \varepsilon_r''$ である。黒い点は測定値を表す。

図 12: 塩化ビニルの緩和過程。横軸は周波数の常用対数 $\log_{10} f$ [Hz] であり、縦軸は複素比誘電率の常用対数 $\log_{10} \varepsilon_r^*$ である。青い点は比誘電率 ε_r' の測定値、緑の点は比誘電損率 ε_r'' の測定値、赤い曲線は式 (32) による ε_r' 、 ε_r'' を表し、青い曲線は式 (32) の 2 つの緩和過程を表す。

表 6: 周波数 f[Hz] ごとのテフロンの静電容量 C[F] と誘電正接 $\tan \delta$ の測定結果。

$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	f[Hz]	$C[\mathbf{F}]$	$ an \delta$	f[Hz]	C[F]	$ an \delta$
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	1.000	60.05×10^{-12}	1.596	1.123	57.43×10^{-12}	1.595
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	1.262	51.13×10^{-12}	1.466	1.418	45.62×10^{-12}	1.484
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	1.592	46.36×10^{-12}	1.356	1.789	43.50×10^{-12}	1.221
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2.009	41.86×10^{-12}	1.179	2.257	37.96×10^{-12}	1.158
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	2.535	35.64×10^{-12}	1.056	2.848	34.07×10^{-12}	9.853×10^{-1}
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	3.199	31.11×10^{-12}	9.877×10^{-1}	3.594	31.28×10^{-12}	8.426×10^{-1}
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	4.037	30.03×10^{-12}	7.956×10^{-1}	4.535	30.15×10^{-12}	6.726×10^{-1}
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	5.094	27.64×10^{-12}	6.578×10^{-1}	5.722	25.88×10^{-12}	7.046×10^{-1}
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	6.428	26.27×10^{-12}	5.379×10^{-1}	7.221	26.10×10^{-12}	5.221×10^{-1}
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	8.111	24.39×10^{-12}	5.127×10^{-1}	9.112	24.85×10^{-12}	3.960×10^{-1}
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1.024×10^{1}	23.24×10^{-12}	3.976×10^{-1}	1.150×10^{1}	23.31×10^{-12}	3.449×10^{-1}
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1.292×10^{1}	23.49×10^{-12}	3.019×10^{-1}	1.451×10^{1}	22.82×10^{-12}	2.747×10^{-1}
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1.630×10^{1}	22.71×10^{-12}	2.607×10^{-1}	1.831×10^{1}	22.31×10^{-12}	2.336×10^{-1}
$2.595 \times 10^{1} 21.48 \times 10^{-12} 1.654 \times 10^{-1} 2.915 \times 10^{1} 21.34 \times 10^{-12} 1.499 \times 10^{-1}$	2.057×10^{1}	22.25×10^{-12}	2.177×10^{-1}	2.310×10^{1}	22.37×10^{-12}	1.941×10^{-1}
	2.595×10^{1}	21.48×10^{-12}	1.654×10^{-1}	2.915×10^{1}	21.34×10^{-12}	1.499×10^{-1}
$3.275 \times 10^{1} 21.22 \times 10^{-12} 1.339 \times 10^{-1} 3.678 \times 10^{1} 21.28 \times 10^{-12} 1.178 \times 10^{-12}$	3.275×10^{1}	21.22×10^{-12}	1.339×10^{-1}	3.678×10^{1}	21.28×10^{-12}	1.178×10^{-1}
$4.132 \times 10^{1} 21.14 \times 10^{-12} 1.086 \times 10^{-1} 4.642 \times 10^{1} 21.10 \times 10^{-12} 9.503 \times 10^{-2}$	4.132×10^{1}	21.14×10^{-12}	1.086×10^{-1}	4.642×10^{1}	21.10×10^{-12}	9.503×10^{-2}
$5.214 \times 10^{1} 20.92 \times 10^{-12} 7.617 \times 10^{-2} 5.857 \times 10^{1} 20.81 \times 10^{-12} 7.084 \times 10^{-2}$	5.214×10^{1}	20.92×10^{-12}	7.617×10^{-2}	5.857×10^{1}	20.81×10^{-12}	7.084×10^{-2}
$6.579 \times 10^{1} 20.79 \times 10^{-12} 6.889 \times 10^{-2} 7.391 \times 10^{1} 20.54 \times 10^{-12} 6.498 \times 10^{-2}$	6.579×10^{1}	20.79×10^{-12}	6.889×10^{-2}	7.391×10^{1}	20.54×10^{-12}	6.498×10^{-2}
$8.302 \times 10^{1} 20.69 \times 10^{-12} 5.206 \times 10^{-2} 9.326 \times 10^{1} 20.57 \times 10^{-12} 5.110 \times 10^{-2}$	8.302×10^{1}	20.69×10^{-12}	5.206×10^{-2}	9.326×10^{1}	20.57×10^{-12}	5.110×10^{-2}
$1.048 \times 10^{2} 20.56 \times 10^{-12} 4.187 \times 10^{-2} 1.177 \times 10^{2} 20.40 \times 10^{-12} 3.507 \times 10^{-2}$	1.048×10^{2}	20.56×10^{-12}	4.187×10^{-2}	1.177×10^{2}	20.40×10^{-12}	3.507×10^{-2}
$1.322 \times 10^{2} 20.42 \times 10^{-12} 3.707 \times 10^{-2} 1.485 \times 10^{2} 20.42 \times 10^{-12} 2.951 \times 10^{-2}$	1.322×10^{2}	20.42×10^{-12}	3.707×10^{-2}	1.485×10^{2}	20.42×10^{-12}	2.951×10^{-2}
$1.668 \times 10^{2} 20.36 \times 10^{-12} 2.553 \times 10^{-2} 1.874 \times 10^{2} 20.35 \times 10^{-12} 2.009 \times 10^{-2}$	1.668×10^{2}	20.36×10^{-12}	2.553×10^{-2}	1.874×10^{2}	20.35×10^{-12}	2.009×10^{-2}
$2.105 \times 10^{2} 20.27 \times 10^{-12} 2.083 \times 10^{-2} 2.365 \times 10^{2} 20.23 \times 10^{-12} 1.780 \times 10^{-2}$	2.105×10^{2}	20.27×10^{-12}	2.083×10^{-2}	2.365×10^{2}	20.23×10^{-12}	1.780×10^{-2}
$2.656 \times 10^{2} 20.19 \times 10^{-12} 1.663 \times 10^{-2} 2.984 \times 10^{2} 20.18 \times 10^{-12} 1.466 \times 10^{-2}$	2.656×10^2	20.19×10^{-12}	1.663×10^{-2}	2.984×10^{2}	20.18×10^{-12}	1.466×10^{-2}
$3.352 \times 10^{2} 20.16 \times 10^{-12} 1.270 \times 10^{-2} 3.765 \times 10^{2} 20.15 \times 10^{-12} 1.205 \times 10^{-2}$	3.352×10^{2}	20.16×10^{-12}	1.270×10^{-2}	3.765×10^{2}	20.15×10^{-12}	1.205×10^{-2}
$4.229 \times 10^{2} 20.12 \times 10^{-12} 9.636 \times 10^{-3} 4.751 \times 10^{2} 20.12 \times 10^{-12} 8.950 \times 10^{-3}$	4.229×10^{2}	20.12×10^{-12}	9.636×10^{-3}	4.751×10^2	20.12×10^{-12}	8.950×10^{-3}
$5.337 \times 10^{2} 20.12 \times 10^{-12} 8.143 \times 10^{-3} 5.995 \times 10^{2} 20.13 \times 10^{-12} 7.714 \times 10^{-3} 5.995 \times 10^{2} 20.13 \times 10^{-12} 7.714 \times 10^{-3} 10^{-12} 1$	5.337×10^{2}	20.12×10^{-12}	8.143×10^{-3}	5.995×10^{2}	20.13×10^{-12}	7.714×10^{-3}
$6.734 \times 10^{2} 20.13 \times 10^{-12} 6.056 \times 10^{-3} 7.565 \times 10^{2} 20.11 \times 10^{-12} 5.689 \times 10^{-3}$	6.734×10^{2}	20.13×10^{-12}	6.056×10^{-3}	7.565×10^{2}	20.11×10^{-12}	5.689×10^{-3}
$8.498 \times 10^{2} 20.11 \times 10^{-12} 5.180 \times 10^{-3} 9.546 \times 10^{2} 20.12 \times 10^{-12} 4.339 \times 10^{-3}$	8.498×10^{2}	20.11×10^{-12}	5.180×10^{-3}	9.546×10^{2}	20.12×10^{-12}	4.339×10^{-3}
$1.072 \times 10^{3} 20.11 \times 10^{-12} 3.914 \times 10^{-3} 1.205 \times 10^{3} 20.10 \times 10^{-12} 3.693 \times 10^{-3}$	1.072×10^{3}	20.11×10^{-12}	3.914×10^{-3}	1.205×10^{3}	20.10×10^{-12}	3.693×10^{-3}
$1.353 \times 10^{3} 20.09 \times 10^{-12} 3.540 \times 10^{-3} 1.520 \times 10^{3} 20.10 \times 10^{-12} 2.702 \times 10^{-3} 1.520 \times 10^{-12} 2.702 \times 10^{-3} 1.520 \times 10^{-12} 2.702 \times 10^{-3} 1.520 \times 10^{-3} 1.520 \times 10^{-12} 2.702 \times 10^{-3} 1.520 \times 10^{-3} 1.520 \times 10^{-12} 2.702 \times 10^{-3} 1.520 $	1.353×10^{3}	20.09×10^{-12}	3.540×10^{-3}	1.520×10^{3}	20.10×10^{-12}	2.702×10^{-3}
$1.707 \times 10^{3} 20.09 \times 10^{-12} 2.660 \times 10^{-3} 1.918 \times 10^{3} 20.09 \times 10^{-12} 2.436 \times 10^{-3} 1.918 \times 10^{3} 20.09 \times 10^{-12} 2.436 \times 10^{-3} 1.918 \times 10^{3} 20.09 \times 10^{-12} 2.436 \times 10^{-3} 1.918 \times 10^{3} 20.09 \times 10^{-12} 2.436 \times 10^{-3} 1.918 \times 10^{3} 20.09 \times 10^{-12} 2.436 \times 10^{-3} 1.918 \times 10^{3} 20.09 \times 10^{-12} 2.436 \times 10^{-3} 1.918 \times 10^{3} 20.09 \times 10^{-12} 2.436 \times 10^{-3} 1.918 \times 10^{3} 20.09 \times 10^{-12} 2.436 \times 10^{-3} 1.918 \times 10^{3} 20.09 \times 10^{-12} 2.436 \times 10^{-3} 1.918 \times 10^{3} 20.09 \times 10^{-12} 2.436 \times 10^{-3} 1.918 \times 10^{3} 20.09 \times 10^{-12} 2.436 \times 10^{-3} 1.918 \times 10^{3} 20.09 \times 10^{-12} 2.436 \times 10^{-3} 1.918 \times 10^{3} 20.09 \times 10^{-12} 2.436 \times 10^{-3} 1.918 \times 10^{3} 20.09 \times 10^{-12} 2.436 \times 10^{-3} 1.918 \times 10^{3} 20.09 \times 10^{-12} 2.436 \times 10^{-3} 1.918 \times 10^{3} 20.09 \times 10^{-12} 2.436 \times 10^{-3} 1.918 \times 10^{3} 20.09 \times 10^{-12} 2.436 \times 10^{-3} 1.918 \times 10^{3} 20.09 \times 10^{-12} 2.436 \times 10^{-3} 1.918 \times 10^{-3} 1.918 \times 10^{-3} 1.918 \times 10^{-12} 2.436 \times 10^{-3} 1.918 \times 10^{-3} 1.918 \times 10^{-12} 1.918 \times 10^{-12$	1.707×10^{3}	20.09×10^{-12}	2.660×10^{-3}	1.918×10^{3}	20.09×10^{-12}	2.436×10^{-3}
$2.154 \times 10^{3} 20.07 \times 10^{-12} 9.913 \times 10^{-4} 2.420 \times 10^{3} 20.07 \times 10^{-12} 7.220 \times 10^{-4} 10^{-4$	2.154×10^{3}	20.07×10^{-12}	9.913×10^{-4}	2.420×10^{3}	20.07×10^{-12}	7.220×10^{-4}
$2.719 \times 10^{3} 20.08 \times 10^{-12} 9.350 \times 10^{-4} 3.054 \times 10^{3} 20.07 \times 10^{-12} 8.477 \times 10^{-4} 3.054 \times 10^{3} 20.07 \times 10^{-12} 8.477 \times 10^{-4} 3.054 \times 10^{3} 20.07 \times 10^{-12} $	2.719×10^{3}	20.08×10^{-12}	9.350×10^{-4}	3.054×10^{3}	20.07×10^{-12}	8.477×10^{-4}
$3.431 \times 10^{3} 20.07 \times 10^{-12} 6.088 \times 10^{-4} 3.854 \times 10^{3} 20.07 \times 10^{-12} 5.386 \times 10^{-4}$	3.431×10^{3}	20.07×10^{-12}	6.088×10^{-4}	3.854×10^{3}	20.07×10^{-12}	5.386×10^{-4}
$4.329 \times 10^{3} 20.07 \times 10^{-12} 6.180 \times 10^{-4} 4.863 \times 10^{3} 20.07 \times 10^{-12} 5.121 \times 10^{-4}$	4.329×10^{3}	20.07×10^{-12}	6.180×10^{-4}	4.863×10^{3}	20.07×10^{-12}	5.121×10^{-4}
5.462×10^{3} 20.07×10 ⁻¹² 5.667×10^{-4} 6.136×10^{3} 20.07×10 ⁻¹² 5.603×10^{-4}	5.462×10^{3}	20.07×10^{-12}	5.667×10^{-4}	6.136×10^{3}	20.07×10^{-12}	5.603×10^{-4}
$6.893 \times 10^{3} 20.06 \times 10^{-12} 4.720 \times 10^{-4} 7.743 \times 10^{3} 20.06 \times 10^{-12} 5.724 \times 10^{-4}$	6.893×10^{3}	20.06×10^{-12}	4.720×10^{-4}	7.743×10^{3}	20.06×10^{-12}	5.724×10^{-4}
$8.698 \times 10^{-12} 20.06 \times 10^{-12} 5.622 \times 10^{-4} 9.770 \times 10^{3} 20.06 \times 10^{-12} 5.140 \times 10^{-4}$	8.698×10^{3}	20.06×10^{-12}	5.622×10^{-4}	9.770×10^{3}	20.06×10^{-12}	5.140×10^{-4}
$1.098 \times 10^{4} 20.06 \times 10^{-12} 5.617 \times 10^{-4} 1.233 \times 10^{4} 20.06 \times 10^{-12} 5.905 \times 10^{-4}$	1.098×10^{4}	20.06×10^{-12}	5.617×10^{-4}	1.233×10^{4}	20.06×10^{-12}	5.905×10^{-4}
$1.385 \times 10^{4} 20.06 \times 10^{-12} 5.281 \times 10^{-4} 1.556 \times 10^{4} 20.06 \times 10^{-12} 5.639 \times 10^{-4}$	1.385×10^{4}	20.06×10^{-12}	5.281×10^{-4}	1.556×10^{4}	20.06×10^{-12}	5.639×10^{-4}
$1.748 \times 10^{-2} 20.06 \times 10^{-12} 5.501 \times 10^{-4} 1.963 \times 10^{-12} 20.06 \times 10^{-12} 5.493 \times 10^{-4}$	1.748×10^{4}	20.06×10^{-12}	5.501×10^{-4}	1.963×10^{4}	20.06×10^{-12}	5.493×10^{-4}
2.205×10^{-2} 20.05×10^{-2} 8.067×10^{-4} 2.477×10^{4} 20.06×10^{-12} 5.774×10^{-4}	2.205×10^4	20.05×10^{-12}	8.007×10^{-4}	2.477×10^4	20.06×10^{-12}	5.774×10^{-4}
$2.(83 \times 10^{-2} - 20.06 \times 10^{-12} - 5.835 \times 10^{-4} - 3.126 \times 10^{-4} - 20.06 \times 10^{-12} - 5.794 \times 10^{-4} - 5.794 \times$	2.783×10^{4}	20.06×10^{-12}	5.835×10^{-4}	3.126×10^4	20.06×10^{-12}	5.794×10^{-4}
5.511×10^{-2} 20.06×10 ⁻² 5.823×10^{-3} 3.944×10^{4} 20.06×10 ⁻¹² 6.094×10^{-4}	3.511×10^{4}	20.06×10^{-12}	5.823×10^{-4}	3.944×10^{4}	20.06×10^{-12}	0.094×10^{-4}
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	4.431×10^{4}	20.00×10^{-12}	5.241×10^{-4}	4.977×10^{4}	20.06×10^{-12}	0.203×10^{-4}
0.091×10 20.07×10 ⁻¹² 0.090×10 0.280×10^{-2} 20.07×10 ⁻¹² 0.010×10^{-4}	0.091×10^{4}	20.07×10^{-12}	0.790×10^{-4}	0.280×10^{4}	20.07×10^{-12}	$(.429 \times 10^{-4})$
$8.902 \times 10^{4} 20.08 \times 10^{-12} 1.038 \times 10^{-3} 1.000 \times 10^{5} 20.09 \times 10^{-12} 1.234 \times 10^{-3}$	8.902×10^4	20.07×10 20.08×10^{-12}	1.038×10^{-3}	1.923×10^{5}	20.03×10 20.09×10^{-12}	1.234×10^{-3}

図 13: テフロンの複素比誘電率 ε_r^* の周波数依存性。横軸は周波数の常用対数 $\log_{10} f$ [Hz] であり、縦軸は (a) 比誘電率 ε_r' であり、(b) 比誘電損率の常用対数 $\log_{10} \varepsilon_r''$ である。黒い点は測定値を表す。

図 14: テフロンの緩和過程。横軸は周波数の常用対数 $\log_{10} f$ [Hz] であり、縦軸は複素比誘電率の常用対数 $\log_{10} \varepsilon_r^*$ である。青い点は比誘電率 ε_r' の測定値、緑の点は比誘電損率 ε_r'' の測定値、赤い曲線は式 (33) による ε_r' 、 ε_r'' を表し、青い曲線は式 (33) の緩和過程を表す。

となり、誘電正接 tan δ が、温度 T によらず、ほぼ一定値をとっていることが分かる。このとき、表 7 より、 誘電正接 tan δ は tan $\delta \sim 10^{-2} \sim \delta$ となり、位相の遅れ δ も非常に小さくなることから、BaTiO₃ の分極は 大変速いことが分かる。また、BaTiO₃ は、第 1 節において述べた強誘電体(積層セラミックコンデンサー の誘電材料として知られている)であるため、図 15 から分かるように、比誘電率 ε'_r の値が非常に大きい。

表 7: 温度 T[] ごとの $BaTiO_3$ の静電容量 C[F] と誘電正接 $tan \delta$ の測定結果。

T[]	C[F]	$ an \delta$	T[]	C[F]	$ an \delta$	T[]	C[F]	$\tan \delta$
28	0.8682×10^{-9}	9.224×10^{-3}	41	0.8682×10^{-9}	1.106×10^{-2}	53	0.8684×10^{-9}	1.173×10^{-2}
61	0.8770×10^{-9}	1.255×10^{-2}	69	0.8948×10^{-9}	1.270×10^{-2}	79	0.9216×10^{-9}	1.240×10^{-2}
89	0.9895×10^{-9}	1.287×10^{-2}	98	1.105×10^{-9}	1.372×10^{-2}	105	1.216×10^{-9}	1.379×10^{-2}
109	1.333×10^{-9}	1.468×10^{-2}	111	1.443×10^{-9}	1.553×10^{-2}	112	1.443×10^{-9}	1.474×10^{-2}
113	1.493×10^{-9}	1.561×10^{-2}	114	1.620×10^{-9}	1.482×10^{-2}	115	1.738×10^{-9}	1.573×10^{-2}
116	1.922×10^{-9}	1.599×10^{-2}	117	2.190×10^{-9}	1.647×10^{-2}	118	2.898×10^{-9}	1.742×10^{-2}
119	3.509×10^{-9}	1.851×10^{-2}	120	3.616×10^{-9}	1.837×10^{-2}	121	3.640×10^{-9}	1.822×10^{-2}
122	3.667×10^{-9}	1.819×10^{-2}	123	3.563×10^{-9}	1.787×10^{-2}	124	3.555×10^{-9}	1.779×10^{-2}
125	3.475×10^{-9}	1.783×10^{-2}	126	3.357×10^{-9}	1.727×10^{-2}	127	3.305×10^{-9}	1.734×10^{-2}
128	3.224×10^{-9}	1.716×10^{-2}	129	3.080×10^{-9}	1.698×10^{-2}	130	3.034×10^{-9}	1.679×10^{-2}
133	2.806×10^{-9}	1.644×10^{-2}	136	2.578×10^{-9}	1.630×10^{-2}	140	2.345×10^{-9}	1.613×10^{-2}

図 15: BaTiO₃の複素比誘電率 ε_r^* の温度依存性。横軸は温度 T[]であり、縦軸は (a) 比誘電率 ε_r' であり、 (b) 比誘電損率 ε_r'' である。黒い点は測定値を表す。

5.4 ガラスの複素誘電率の周波数依存性の測定

周波数ごとのガラスの静電容量 C と誘電正接 tan δ の測定は 3 回行った。周波数ごとに得られた 3 個の 測定値を平均し、各周波数の測定結果とした。表 8 に、周波数 f[Hz] ごとのガラスの静電容量 C[F] と誘電 正接 tan δ の測定結果を示す。図 16 に、表 8 の測定結果を用いた、ガラスの複素比誘電率 ε_r^* の周波数依存 性を示す。ここで、横軸は周波数の常用対数 $\log_{10} f$ [Hz]、縦軸は (a) 比誘電率 ε_r' 、(b) 比誘電損率の常用対 数 $\log_{10} \varepsilon_r''$ であり、黒い点は測定値を表す。図 16(a) において、比誘電率 ε_r' は、周波数 f[Hz] の値と共に 減少し、一定値に漸近しているように見える。図 16(a)、(b) は、アクリルや塩化ビニルの緩和過程の振る 舞いに似ていることから、ガラスには少なくとも2つの緩和過程があるのではないかと思われる。

図 16: ガラスの複素比誘電率 ε_r^* の周波数依存性。横軸は周波数の常用対数 $\log_{10} f$ [Hz] であり、縦軸は (a) 比誘電率 ε_r' であり、(b) 比誘電損率の常用対数 $\log_{10} \varepsilon_r''$ である。黒い点は測定値を表す。

6 考察

6.1 アクリル、塩化ビニル、テフロンの複素誘電率の周波数依存性の考察

アクリル、塩化ビニル、テフロンの緩和過程について考察する。アクリル、塩化ビニル、テフロンは鎖状 高分子と呼ばれる高分子である。鎖状高分子は、分子鎖同士がからみ合いながら結合した構造をしており、 温度によってその分子運動の様子が異なる。鎖状高分子が固体状態であるとき、分子鎖同士の結合が保たれ ているため、分子運動としては、

- ミクロブラウン運動(分子鎖中の原子団の運動)
- 局所運動(分子鎖中の側鎖の運動)

の2つが挙げられる^[2]。このうち、ミクロブラウン運動は、温度がガラス転移点よりも高温であるときに 生じる。ガラス転移点は、アクリルでは90[]、塩化ビニルでは87[]、テフロンでは126[]であり^[6]、 室温に比べて十分温度が高いため、今の場合、ミクロブラウン運動は生じていない。よって、アクリル、塩 化ビニル、テフロンの緩和過程は、分子鎖中の側鎖の運動である局所運動によるものと考えられる。そこ で、各試料の側鎖の構造に注目したい。図17に、各試料の構造式を示す。図17から、アクリル・塩化ビニ ルの側鎖は側鎖を構成する原子が異なり、非対称な構造をしていることが分かる。一方、テフロンの側鎖は 全てフッ素 F であり、対称な構造をしている。側鎖が対称な構造であるとき、電荷の偏りが無いことから、 電場をかけても側鎖の回転は生じない。よって、アクリル・塩化ビニルでは局所運動が起きるが、テフロン では局所運動は起こらない。以上のことを踏まえて、図10、図12、図14のアクリル、塩化ビニル、テフ ロンの緩和過程を考えると、アクリル・塩化ビニルには高周波側の緩和過程があるが、テフロンにはない。 したがって、高周波側の緩和過程は、側鎖の運動によるものであると言える。

表 8: 周波数 f[Hz] ごとのガラスの静電容量 C[F] と誘電正接 $\tan \delta$ の測定結果。

f[Hz]	C[F]	$ an \delta$	f[Hz]	C[F]	$ an \delta$
1.000	1.886×10^{-12}	6.517×10^{-1}	1.123	1.485×10^{-12}	-1.694×10^{-1}
1.262	1.384×10^{-12}	6.983×10^{-1}	1.418	1.781×10^{-12}	7.687×10^{-1}
1.592	1.355×10^{-12}	9.181×10^{-1}	1.789	1.174×10^{-12}	5.685×10^{-1}
2.009	1.619×10^{-12}	7.216×10^{-1}	2.257	1.615×10^{-12}	2.576×10^{-1}
2.535	1.369×10^{-12}	4.836×10^{-1}	2.848	1.392×10^{-12}	2.874×10^{-1}
3.199	1.364×10^{-12}	2.808×10^{-1}	3.594	1.396×10^{-12}	2.318×10^{-1}
4.037	1.345×10^{-12}	2.746×10^{-1}	4.535	1.443×10^{-12}	1.734×10^{-1}
5.094	1.327×10^{-12}	1.582×10^{-1}	5.722	1.361×10^{-12}	1.409×10^{-1}
6.428	1.353×10^{-12}	1.270×10^{-1}	7.221	1.155×10^{-12}	1.509×10^{-1}
8.111	1.096×10^{-12}	1.478×10^{-1}	9.112	1.247×10^{-12}	1.809×10^{-3}
1.024×10^{1}	1.218×10^{-12}	8.202×10^{-2}	1.150×10^{1}	1.316×10^{-12}	1.142×10^{-1}
1.292×10^{1}	1.319×10^{-12}	5.163×10^{-2}	1.451×10^{1}	1.210×10^{-12}	1.236×10^{-1}
1.630×10^{1}	1.222×10^{-12}	8.296×10^{-2}	1.831×10^{1}	1.345×10^{-12}	1.379×10^{-1}
2.057×10^{1}	1.148×10^{-12}	1.218×10^{-1}	2.310×10^{1}	1.282×10^{-12}	3.134×10^{-2}
2.595×10^{1}	1.212×10^{-12}	1.271×10^{-2}	2.915×10^{1}	1.226×10^{-12}	-5.966×10^{-2}
3.275×10^{1}	1.304×10^{-12}	1.562×10^{-1}	3.678×10^{1}	1.105×10^{-12}	7.092×10^{-2}
4.132×10^{1}	1.430×10^{-12}	1.773×10^{-2}	4.642×10^{1}	1.205×10^{-12}	9.078×10^{-1}
5.214×10^{1}	1.236×10^{-12}	-1.723×10^{-2}	5.857×10^{1}	1.131×10^{-12}	-6.451×10^{-2}
6.579×10^{1}	1.275×10^{-12}	2.271×10^{-2}	7.391×10^{1}	1.134×10^{-12}	4.039×10^{-2}
8.302×10^{1}	1.170×10^{-12}	6.707×10^{-2}	9.326×10^{1}	1.204×10^{-12}	2.034×10^{-2}
1.048×10^{2}	1.113×10^{-12}	2.366×10^{-2}	1.177×10^{2}	1.147×10^{-12}	5.704×10^{-2}
1.322×10^{2}	1.164×10^{-12}	4.289×10^{-2}	1.485×10^{2}	1.139×10^{-12}	4.187×10^{-2}
1.668×10^{2}	1.146×10^{-12}	4.824×10^{-2}	1.874×10^{2}	1.143×10^{-12}	4.171×10^{-2}
2.105×10^{2}	1.127×10^{-12}	4.544×10^{-2}	2.365×10^{2}	1.131×10^{-12}	4.024×10^{-2}
2.656×10^{2}	1.125×10^{-12}	4.486×10^{-2}	2.984×10^{2}	1.125×10^{-12}	4.193×10^{-2}
3.352×10^{2}	1.117×10^{-12}	4.142×10^{-2}	3.765×10^{2}	1.113×10^{-12}	4.239×10^{-2}
4.229×10^{2}	1.110×10^{-12}	3.939×10^{-2}	4.751×10^2	1.108×10^{-12}	3.803×10^{-2}
5.337×10^{2}	1.104×10^{-12}	3.557×10^{-2}	5.995×10^{2}	1.106×10^{-12}	2.548×10^{-2}
6.734×10^{2}	1.099×10^{-12}	3.276×10^{-2}	7.565×10^{2}	1.097×10^{-12}	3.201×10^{-2}
8.498×10^{2}	1.100×10^{-12}	2.814×10^{-2}	9.546×10^{2}	1.092×10^{-12}	2.845×10^{-2}
1.072×10^{3}	1.091×10^{-12}	2.774×10^{-2}	1.205×10^{3}	1.089×10^{-12}	2.620×10^{-2}
1.353×10^{3}	1.087×10^{-12}	2.551×10^{-2}	1.520×10^{3}	1.086×10^{-12}	2.460×10^{-2}
1.707×10^{3}	1.085×10^{-12}	2.419×10^{-2}	1.918×10^{3}	1.083×10^{-12}	2.352×10^{-2}
2.154×10^{3}	1.081×10^{-12}	2.258×10^{-2}	2.420×10^{3}	1.080×10^{-12}	2.227×10^{-2}
2.719×10^{3}	1.079×10^{-12}	2.154×10^{-2}	3.054×10^{3}	1.077×10^{-12}	2.121×10^{-2}
3.431×10^{3}	1.076×10^{-12}	2.064×10^{-2}	3.854×10^{3}	1.074×10^{-12}	2.023×10^{-2}
4.329×10^{3}	1.072×10^{-12}	2.006×10^{-2}	4.863×10^{3}	1.071×10^{-12}	1.954×10^{-2}
5.462×10^{3}	1.070×10^{-12}	1.918×10^{-2}	6.136×10^{3}	1.068×10^{-12}	1.866×10^{-2}
6.893×10^{3}	1.067×10^{-12}	1.821×10^{-2}	7.743×10^{3}	1.065×10^{-12}	1.771×10^{-2}
8.698×10^{3}	1.064×10^{-12}	1.752×10^{-2}	9.770×10^{8}	1.063×10^{-12}	1.717×10^{-2}
1.098×10^{4}	1.062×10^{-12}	1.678×10^{-2}	1.233×10^{4}	1.060×10^{-12}	1.536×10^{-2}
1.385×10^{4}	1.057×10^{-12}	1.602×10^{-2}	1.556×10^{4}	1.058×10^{-12}	1.552×10^{-2}
1.748×10^{4}	1.056×10^{-12}	1.562×10^{-2}	1.963×10^{4}	1.056×10^{-12}	1.535×10^{-2}
2.203×10^{4}	1.034×10^{-12}	1.320×10^{-2}	2.477×10^{4}	1.050×10^{-12}	1.492×10^{-2}
2.783×10^{4} 2.511×10^{4}	1.054×10^{-12}	1.439×10^{-2} 1.450×10^{-2}	3.120×10^{4}	1.052×10^{-12}	1.400×10^{-2} 1.447×10^{-2}
3.311×10^{-4}	1.051×10^{-12}	1.439×10^{-2}	3.944×10^{-4}	1.030×10^{-12}	$1.44(\times 10^{-2})$
4.431×10 5 501 × 10 ⁴	1.000×10 1.048×10^{-12}	1.399×10 1.496 × 10 ⁻²	4.977×10	1.040×10 1.047×10^{-12}	1.430×10 1.445×10^{-2}
0.091×10 7 055 $\times 10^4$	1.040×10 1.046×10^{-12}	1.420×10 1.471×10^{-2}	0.200×10 7 025 × 10 ⁴	1.047×10 1.045×10^{-12}	1.440×10 1 504 × 10 ⁻²
8.000×10^{4}	1.040×10 1.040×10^{-12}	$1.4(1 \times 10)$ $1.5/(0 \times 10^{-2})$	1.923×10^{-10}	1.043×10 1.043×10^{-12}	1.504×10 1.617×10^{-2}
0.002/10	1.011/10	1.010 / 10	1.000/10	1.010/10	1.011/10

低周波側の緩和過程は、ミクロブラウン運動や局所運動以外によるものである。低周波側に現れていることから、例えば、試料内に含まれている電解質中のイオンが、電場により移動することで、見かけ上の緩和 過程が生じている可能性などが考えられる。

図 17: アクリル、塩化ビニル、テフロンの構造式。(a) アクリル、(b) 塩化ビニル、(c) テフロン。炭素 C に 結合しているのが側鎖である。

6.2 BaTiO₃の複素誘電率の温度依存性の考察

図 18: BaTiO₃の結晶構造。(a) $T < T_c$ 、(b) $T > T_c$ 。緑の丸は Ti⁴⁺、赤い丸は O²⁻、青い丸は Ba²⁺ であ り、a、c ($a \neq c$) は結晶の各辺の長さである。

BaTiO₃ はペロブスカイト構造を持つイオン結晶であり、強誘電体として知られている。図 18 に、BaTiO₃ の結晶構造を示す。温度 T がキュリー点 T_c より低いとき ($T < T_c$ 、図 18(a)) 各頂点に位置する Ba²⁺ が 大きいことで、O²⁻ が面の中心から外へと押し広げられる。これにより、中央の Ti⁴⁺ が自由に動けるよう になる。つまり、 $T < T_c$ のとき、BaTiO₃ は正方晶となり、自発分極を有する。温度 T がキュリー点 T_c よ り高いとき ($T > T_c$ 、図 18(b)) O²⁻ は面の中心に位置できるようになるため、中央の Ti⁴⁺ は自由に動け なくなる。つまり、 $T > T_c$ のとき、BaTiO₃ は立法晶となり、その自発分極は消失する。よって、BaTiO₃ が正方晶から立法晶へ構造相転移する直前、 $T = T_c$ において、BaTiO₃の分極の大きさは最大となる。こ のとき、比誘電率 ε'_r も最大になることから、図 15 の比誘電率 ε'_r のグラフを用いて、キュリー温度 T_c を 求める。

図 19 に、BaTiO₃ の比誘電率 ε'_r の温度依存性を示す。ここで、横軸は温度 T[]、縦軸は比誘電率 ε'_r 、 黒い点は測定値、赤い直線は ε'_r の極大に対する低温側 (116 $\leq T \leq$ 119)の回帰直線、

 $\varepsilon'_r = 811.7T - 91470$

(35)

図 19: BaTiO₃ の比誘電率 ε'_r の温度依存性。横軸は温度 T[]であり、縦軸は比誘電率 ε'_r である。黒い点は測定値、赤い直線は ε'_r の極大に対する低温側 (116 $\leq T \leq 119$)の回帰直線であり、青い曲線は高温側 (126 $\leq T \leq 140$)の回帰曲線である。

であり(残差の二乗和は96758), 青い曲線は高温側($126 \le T \le 140$)の回帰曲線、

 $\varepsilon_r' = 1.880T^2 - 609.7T + 51990$

(36)

である(残差の二乗和は2790)。式(35)、式(36)から、回帰直線と回帰曲線の交点T_cを求めると、

$$811.7T_c - 91470 = 1.880T_c^2 - 609.7T_c + 51990 \Longrightarrow T_c = 120.0 []$$
(37)

となる。 $BaTiO_3$ のキュリー温度 T_c は、 $T_c = 120$ []^[4]であるので、式 (37) はキュリー温度と一致する。 比誘電率 ε'_r の測定から、 $BaTiO_3$ の構造相転移を確認できた。

6.3 ガラスの複素誘電率の周波数依存性の考察

ガラスの比誘電率は $3.7 \sim 10.0^{[5]}$ であり、幅広い値をとる。表 8、図 16 より、ガラスの比誘電率 ε_r の測定値は 3.6 となったが、この値はガラスの中でも低い。このような比誘電率を持つガラスとして挙げられるのが、石英ガラスである。石英ガラスの比誘電率は $3.5 \sim 4.0^{[5]}$ であり、測定値はこの範囲に含まれる。測定に用いたのはガラスのシャーレであるので、耐熱性 [7] からも、石英ガラスは良い候補になると思われる³。一方、比誘電率の測定値が 3.6 と低くなった別の理由として、測定の際、ガラスと電極の間に隙間が生じていたことも考えられる。

いずれにせよ、比誘電率だけからガラスの種類を特定するのは難しいように思える。そこで、複素比誘電 率の周波数依存性を各緩和過程に分解し、それぞれの過程の要因となる分極が何であるかを突き止めるこ とが必要であろう。

³そうは言いましたが、石英ガラスは値段が非常に高い^[8]ので、違うような気もします...。同様の耐熱性を持つガラスとして、バイコールがありますが、これも値段が高い^[8]ので、やはり違うような気がします...。本当は何だったのでしょうか...。

参考文献

- [1] 梅原利宏著,"誘電体 物理学実験プリント"(2014).
- [2] 犬石嘉雄, 中島達二, 川辺和夫, 家田正之著, "電気学会大学講座 誘電体現象論", 電気学会 (1999).
- [3] 古江広和著, "分極について", http://www.rs.noda.tus.ac.jp/ furuelab/introduction/bunkyoku.html (2006), 2014年6月23日取得.
- [4] 観山正見著,"理科年表 平成 24 年", 丸善出版 (2011).
- [5] 山本電機工業株式会社、"各種物質の誘電率表", http://yamaden-sensor.jp/technology/table.html (2007), 2014年6月30日取得.
- [6] 株式会社ミスミ、"プラ金型講座 樹脂のガラス転移温度 Tg", http://koza.misumi.jp/mold/2009/04/405.html (2009), 2014 年 6 月 30 日取得.
- [7] 有限会社山善特殊硝子製作所, "参考資料", http://www.yamazenglass.co.jp/sankou.htm (1995), 2014 年 6 月 30 日取得.
- [8] 富士理化工業株式会社、"取り扱い商品一覧"、
 http://fujirika.co.jp/fujist_glsita.html (2014), 2014 年 6 月 30 日取得.